36th Canadian Mathematical Olympiad

Wednesday, March 31, 2004

1. Find all ordered triples (x, y, z) of real numbers which satisfy the following system of equations:

$$
\left\{\begin{array}{l}
x y=z-x-y \\
x z=y-x-z \\
y z=x-y-z
\end{array}\right.
$$

2. How many ways can 8 mutually non-attacking rooks be placed on the 9×9 chessboard (shown here) so that all 8 rooks are on squares of the same colour?
[Two rooks are said to be attacking each other if they are placed in the same row or column of the board.]

3. Let A, B, C, D be four points on a circle (occurring in clockwise order), with $A B<A D$ and $B C>C D$. Let the bisector of angle $B A D$ meet the circle at X and the bisector of angle $B C D$ meet the circle at Y. Consider the hexagon formed by these six points on the circle. If four of the six sides of the hexagon have equal length, prove that $B D$ must be a diameter of the circle.
4. Let p be an odd prime. Prove that

$$
\sum_{k=1}^{p-1} k^{2 p-1} \equiv \frac{p(p+1)}{2} \quad\left(\bmod p^{2}\right)
$$

[Note that $a \equiv b(\bmod m)$ means that $a-b$ is divisible by m.]
5. Let T be the set of all positive integer divisors of 2004^{100}. What is the largest possible number of elements that a subset S of T can have if no element of S is an integer multiple of any other element of S ?

