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Problem 1. Consider the following operation on positive real numbers written on a black-

board:

Choose a number r written on the blackboard, erase that number, and then write a

pair of positive real numbers a and b satisfying the condition 2r2 = ab on the board.

Assume that you start out with just one positive real number r on the blackboard, and apply

this operation k2 − 1 times to end up with k2 positive real numbers, not necessarily distinct.

Show that there exists a number on the board which does not exceed kr.

(Solution) Using AM-GM inequality, we obtain

1
r2

=
2
ab

=
2ab

a2b2
≤ a2 + b2

a2b2
≤ 1

a2
+

1
b2

. (∗)

Consequently, if we let Sℓ be the sum of the squares of the reciprocals of the numbers written

on the board after ℓ operations, then Sℓ increases as ℓ increases, that is,

S0 ≤ S1 ≤ · · · ≤ Sk2−1. (∗∗)

Therefore if we let s be the smallest real number written on the board after k2−1 operations,

then
1
s2

≥ 1
t2

for any number t among k2 numbers on the board and hence

k2 × 1
s2

≥ Sk2−1 ≥ S0 =
1
r2

,

which implies that s ≤ kr as desired.

Remark. The nature of the problem does not change at all if the numbers on the board

are restricted to be positive integers. But that may mislead some contestants to think the

problem is a number theoretic problem rather than a combinatorial problem.
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Problem 2. Let a1, a2, a3, a4, a5 be real numbers satisfying the following equations:

a1

k2 + 1
+

a2

k2 + 2
+

a3

k2 + 3
+

a4

k2 + 4
+

a5

k2 + 5
=

1
k2

for k = 1, 2, 3, 4, 5.

Find the value of
a1

37
+

a2

38
+

a3

39
+

a4

40
+

a5

41
. (Express the value in a single fraction.)

(Solution) Let R(x) :=
a1

x2 + 1
+

a2

x2 + 2
+

a3

x2 + 3
+

a4

x2 + 4
+

a5

x2 + 5
. Then R(±1) = 1,

R(±2) =
1
4

, R(±3) =
1
9

, R(±4) =
1
16

, R(±5) =
1
25

and R(6) is the value to be found.

Let’s put P (x) := (x2 + 1)(x2 + 2)(x2 + 3)(x2 + 4)(x2 + 5) and Q(x) := R(x)P (x). Then for

k = ±1,±2,±3,±4,±5, we get Q(k) = R(k)P (k) =
P (k)
k2

, that is, P (k)− k2Q(k) = 0. Since

P (x) − x2Q(x) is a polynomial of degree 10 with roots ±1,±2,±3,±4,±5, we get

P (x) − x2Q(x) = A(x2 − 1)(x2 − 4)(x2 − 9)(x2 − 16)(x2 − 25). (∗)

Putting x = 0, we get A =
P (0)

(−1)(−4)(−9)(−16)(−25)
= − 1

120
. Finally, dividing both sides

of (∗) by P (x) yields

1 − x2R(x) = 1 − x2 Q(x)
P (x)

= − 1
120

· (x2 − 1)(x2 − 4)(x2 − 9)(x2 − 16)(x2 − 25)
(x2 + 1)(x2 + 2)(x2 + 3)(x2 + 4)(x2 + 5)

and hence that

1 − 36R(6) = − 35 × 32 × 27 × 20 × 11
120 × 37 × 38 × 39 × 40 × 41

= − 3 × 7 × 11
13 × 19 × 37 × 41

= − 231
374699

,

which implies R(6) =
187465
6744582

.

Remark. We can get a1 =
1105
72

, a2 = −2673
40

, a3 =
1862
15

, a4 = −1885
18

, a5 =
1323
40

by solving

the given system of linear equations, which is extremely messy and takes a lot of time.
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Problem 3. Let three circles Γ1, Γ2, Γ3, which are non-overlapping and mutually external,

be given in the plane. For each point P in the plane, outside the three circles, construct

six points A1, B1, A2, B2, A3, B3 as follows: For each i = 1, 2, 3, Ai, Bi are distinct points

on the circle Γi such that the lines PAi and PBi are both tangents to Γi. Call the point

P exceptional if, from the construction, three lines A1B1, A2B2, A3B3 are concurrent. Show

that every exceptional point of the plane, if exists, lies on the same circle.

(Solution) Let Oi be the center and ri the radius of circle Γi for each i = 1, 2, 3. Let P be

an exceptional point, and let the three corresponding lines A1B1, A2B2,A3B3 concur at Q.

Construct the circle with diameter PQ. Call the circle Γ, its center O and its radius r. We

now claim that all exceptional points lie on Γ.
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Let PO1 intersect A1B1 in X1. As PO1 ⊥ A1B1, we see that X1 lies on Γ. As PA1 is a

tangent to Γ1, triangle PA1O1 is right-angled and similar to triangle A1X1O1. It follows that

O1X1

O1A1
=

O1A1

O1P
, i.e., O1X1 · O1P = O1A1

2 = r1
2.

On the other hand, O1X1 · O1P is also the power of O1 with respect to Γ, so that

r2
1 = O1X1 · O1P = (O1O − r)(O1O + r) = O1O

2 − r2, (∗)

and hence

r2 = OO2
1 − r2

1 = (OO1 − r1)(OO1 + r1).

Thus, r2 is the power of O with respect to Γ1. By the same token, r2 is also the power of

O with respect to Γ2 and Γ3. Hence O must be the radical center of the three given circles.

Since r, as the square root of the power of O with respect to the three given circles, does not

depend on P , it follows that all exceptional points lie on Γ.

Remark. In the event of the radical point being at infinity (and hence the three radical

axes being parallel), there are no exceptional points in the plane, which is consistent with the

statement of the problem.
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Problem 4. Prove that for any positive integer k, there exists an arithmetic sequence

a1

b1
,

a2

b2
, . . . ,

ak

bk

of rational numbers, where ai, bi are relatively prime positive integers for each i = 1, 2, . . . , k,

such that the positive integers a1, b1, a2, b2, . . . , ak, bk are all distinct.

(Solution) For k = 1, there is nothing to prove. Henceforth assume k ≥ 2.

Let p1, p2, . . . , pk be k distinct primes such that

k < pk < · · · < p2 < p1

and let N = p1p2 · · · pk. By Chinese Remainder Theorem, there exists a positive integer x

satisfying

x ≡ − i (mod pi)

for all i = 1, 2, . . . , k and x > N2. Consider the following sequence :

x + 1
N

,
x + 2

N
, , . . . ,

x + k

N
.

This sequence is obviously an arithmetic sequence of positive rational numbers of length k.

For each i = 1, 2, . . . , k, the numerator x + i is divisible by pi but not by pj for j ̸= i, for

otherwise pj divides |i − j|, which is not possible because pj > k > |i − j|. Let

ai :=
x + i

pi
, bi :=

N

pi
for all i = 1, 2, . . . , k.

Then
x + i

N
=

ai

bi
, gcd(ai, bi) = 1 for all i = 1, 2, . . . , k,

and all bi’s are distinct from each other. Moreover, x > N2 implies

ai =
x + i

pi
>

N2

pi
> N >

N

pj
= bj for all i, j = 1, 2, . . . , k

and hence all ai’s are distinct from bi’s. It only remains to show that all ai’s are distinct from

each other. This follows from

aj =
x + j

pj
>

x + i

pj
>

x + i

pi
= ai for all i < j

by our choice of p1, p2, . . . , pk. Thus, the arithmetic sequence

a1

b1
,

a2

b2
, . . . ,

ak

bk

of positive rational numbers satisfies the conditions of the problem.
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Remark. Here is a much easier solution :

For any positive integer k ≥ 2, consider the sequence

(k!)2 + 1
k!

,
(k!)2 + 2

k!
, . . . ,

(k!)2 + k

k!
.

Note that gcd(k!, (k!)2 + i) = i for all i = 1, 2, . . . , k. So, taking

ai :=
(k!)2 + i

i
, bi :=

k!
i

for all i = 1, 2, . . . , k,

we have gcd(ai, bi) = 1 and

ai =
(k!)2 + i

i
> aj =

(k!)2 + j

j
> bi =

k!
i

> bj =
k!
j

for any 1 ≤ i < j ≤ k. Therefore this sequence satisfies every condition given in the problem.
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Problem 5. Larry and Rob are two robots travelling in one car from Argovia to Zillis. Both

robots have control over the steering and steer according to the following algorithm: Larry

makes a 90◦ left turn after every ℓ kilometer driving from start; Rob makes a 90◦ right turn

after every r kilometer driving from start, where ℓ and r are relatively prime positive integers.

In the event of both turns occurring simultaneously, the car will keep going without changing

direction. Assume that the ground is flat and the car can move in any direction.

Let the car start from Argovia facing towards Zillis. For which choices of the pair (ℓ, r) is the

car guaranteed to reach Zillis, regardless of how far it is from Argovia?

(Solution) Let Zillis be d kilometers away from Argovia, where d is a positive real number.

For simplicity, we will position Argovia at (0, 0) and Zillis at (d, 0), so that the car starts

out facing east. We will investigate how the car moves around in the period of travelling the

first ℓr kilometers, the second ℓr kilometers, . . . , and so on. We call each period of travelling

ℓr kilometers a section. It is clear that the car will have identical behavior in every section

except the direction of the car at the beginning.

Case 1: ℓ − r ≡ 2 (mod 4) . After the first section, the car has made ℓ − 1 right turns and

r− 1 left turns, which is a net of 2(≡ ℓ− r (mod 4)) right turns. Let the displacement vector

for the first section be (x, y). Since the car has rotated 180◦, the displacement vector for

the second section will be (−x,−y), which will take the car back to (0, 0) facing east again.

We now have our original situation, and the car has certainly never travelled further than ℓr

kilometers from Argovia. So, the car cannot reach Zillis if it is further apart from Argovia.

Case 2: ℓ − r ≡ 1 (mod 4) . After the first section, the car has made a net of 1 right turn.

Let the displacement vector for the first section again be (x, y). This time the car has rotated

90◦ clockwise. We can see that the displacements for the second, third and fourth section

will be (y,−x), (−x,−y) and (−y, x), respectively, so after four sections the car is back at

(0, 0) facing east. Since the car has certainly never travelled further than 2ℓr kilometers from

Argovia, the car cannot reach Zillis if it is further apart from Argovia.

Case 3: ℓ − r ≡ 3 (mod 4) . An argument similar to that in Case 2 (switching the roles of

left and right) shows that the car cannot reach Zillis if it is further apart from Argovia.

Case 4: ℓ ≡ r (mod 4) . The car makes a net turn of 0◦ after each section, so it must be

facing east. We are going to show that, after traversing the first section, the car will be at

(1, 0). It will be useful to interpret the Cartesian plane as the complex plane, i.e. writing

x + iy for (x, y), where i =
√
−1. We will denote the k-th kilometer of movement by mk−1,
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which takes values from the set {1, i,−1,−i}, depending on the direction. We then just have

to show that
ℓ r−1∑
k=0

mk = 1,

which implies that the car will get to Zillis no matter how far it is apart from Argovia.

Case 4a: ℓ ≡ r ≡ 1 (mod 4) . First note that for k = 0, 1, . . . , ℓr − 1,

mk = i⌊k/ℓ⌋(−i)⌊k/r⌋

since ⌊k/ℓ⌋ and ⌊k/r⌋ are the exact numbers of left and right turns before the (k + 1)st

kilometer, respectively. Let ak(≡ k (mod ℓ)) and bk(≡ k (mod r)) be the remainders of k

when divided by ℓ and r, respectively. Then, since

ak = k −
⌊

k

ℓ

⌋
ℓ ≡ k −

⌊
k

ℓ

⌋
(mod 4) and bk = k −

⌊
k

r

⌋
r ≡ k −

⌊
k

r

⌋
(mod 4),

we have ⌊k/ℓ⌋ ≡ k − ak (mod 4) and ⌊k/r⌋ ≡ k − bk (mod 4). We therefore have

mk = ik−ak(−i)k−bk = (−i2)ki−ak(−i)−bk = (−i)ak ibk .

As ℓ and r are relatively prime, by Chinese Remainder Theorem, there is a bijection between

pairs (ak, bk) = (k(mod ℓ), k(mod r)) and the numbers k = 0, 1, 2, . . . , ℓr − 1. Hence

ℓ r−1∑
k=0

mk =
ℓ r−1∑
k=0

(−i)ak ibk =

(
ℓ−1∑
k=0

(−i)ak

)(
r−1∑
k=0

ibk

)
= 1 × 1 = 1

as required because ℓ ≡ r ≡ 1 (mod 4).

Case 4b: ℓ ≡ r ≡ 3 (mod 4) . In this case, we get

mk = iak(−i)bk ,

where ak(≡ k (mod ℓ)) and bk(≡ k (mod r)) for k = 0, 1, . . . , ℓr − 1. Then we can proceed

analogously to Case 4a to obtain

ℓ r−1∑
k=0

mk =
ℓ r−1∑
k=0

(−i)ak ibk =

(
ℓ−1∑
k=0

(−i)ak

)(
r−1∑
k=0

ibk

)
= i × (−i) = 1

as required because ℓ ≡ r ≡ 3 (mod 4).

Now clearly the car traverses through all points between (0, 0) and (1, 0) during the first

section and, in fact, covers all points between (n − 1, 0) and (n, 0) during the n-th section.

Hence it will eventually reach (d, 0) for any positive d.
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To summarize: (ℓ, r) satisfies the required conditions if and only if

ℓ ≡ r ≡ 1 or ℓ ≡ r ≡ 3 (mod 4).

Remark. In case gcd(ℓ, r) = d ̸= 1, the answer is :

ℓ

d
≡ r

d
≡ 1 or

ℓ

d
≡ r

d
≡ 3 (mod 4).
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