Solutions for January

654. Let ABC be an arbitrary triangle with the points D, E, F on the sides BC, CA, AB respectively, so

that
BD BF
— < — <1
DC — FA —
and
AE _ AF
EC — FB

Prove that [DEF] < $[ABC], with equality if and only if two at least of the three points D, E, F' are
midpoints of the corresponding sides.
(Note: [XY Z] denotes the area of triangle XY Z.)

Solution 1. Let BF = uBA, BD = ABC and CE = vCA.

The conditions are that

A< and 1-v<1l—p or pu<lv.

DN =

We observe that [BDF] = Au[ABC.
To see this, let BG = ABA. Then

[BDF] = %[BGD] = gﬁ [ABC] = u\[ABC] .

Similarly [AFE] = (1 — p)(1 — M)[ABC] and [DEC] = v(1 — \)[ABC].
Hence
[DEF] = (1 Mt — (1 - p)(1 = v) — v(1 - A)[ABC]
= (u— pv — u\ + v\)[ABC]
1 1

— (3G =P =0~ ) l4BC] < {laBC]

with equality if and only if 4 = 1/2 and either A = = 1/2 or v = g = 1/2. The result follows.

Solution 2. Let G be on AC so that FG||BC. Then, since g—g < %, E lies in the segment AG.

Since % < %, DF produced is either parallel to AC' or meets C'A produced at a point X beyond A.
Hence the distance from G to F'D is not less than the distance from E to FD, so that [DEF] < [FGD].
The area of [FGD] does not change as D varies along BC. To maximize [DEF] is suffices to consider the
special case of triangle [FGD]. Let AF = zAB. Then FFG = xBC and the heights of ADFG and AABC
are in the ratio 1 — . Hence

[DFG]
[ABC]

=z(l —x)

N

which is maximized when z = The result follows from this, with [DEF] being exactly one quarter of
[ABC] when F and G are the midpoints of AB and AC respectively.

Solution 3. Set up the situation as in the second solution. Let BF = tF'A. Then AB = (1+t)FA, and
the height of the triangle FGD is t/(1 + t) times the height of the triangle ABC'. Hence

t
(1+1)2

[DEF] < [FGD] = [ABC] .

Now )
1 t _ (1-1) >0
4 (1462 4(1+4+t)2 —




so that ¢(1 +¢)~2 < 1/4 and the result follows. Equality occurs if and only if t = 1 and E = G, i.e., F' and
E are both midpoints of their sides.

655. (a) Three ants crawl along the sides of a fixed triangle in such a way that the centroid (intersection
of the medians) of the triangle they form at any moment remains constant. Show that this centroid
coincides with the centroid of the fixed triangle if one of the ants travels along the entire perimeter of
the triangle.

(b) Is it indeed always possible for a given fixed triangle with one ant at any point on the perimeter of
the triangle to place the remaining two ants somewhere on the perimeter so that the centroid of their
triangle coincides with the centroid of the fixed triangle?

(a) Solution. Recall that the centroid lies two-thirds of the way along the median from a vertex of the
triangle to its opposite side. Let ABC be the fixed triangle and let PQ|BC, RS||AC and TU||BA with PQ,
RS and TU intersecting in the centroid G.

Observe, for example, that if A, X, Y are collinear and X and Y lie on PQ and BC respectively, then
AX : XY = 2 : 3. It follows from this that, if one ant is at A, then the centroid of the triangle formed
by the three ants lies inside AAPQ (otherwise the midpoint of the side opposite the ant at A would not
be in AABC). Similarly, if one ant is at B (respectively C) then the centroid of the ants’ triangle lies
within ABRS (respectively ACTU). Thus, if one ant traverses the entire perimeter, the centroid of the
ants’ triangle must lie inside the intersection of these three triangles, the singleton {G}. The result follows.

(b) Solution 1. Suppose the vertices of the triangle are given by the planar vectors a, b and c; the
centroid of the triangle is at 1(a + b+ c). Suppose that one ant is placed at ta+ (1 —¢)b for 0 < ¢ < 1.
Place the other two ants at tb + (1 — ¢)c and tc 4 (1 — ¢)a. The centroid of the ants’ triangle is at

%[(ta+(1—t)b)+(tb+(1—t)c)+(tc+(1—t)a) - %(a+b+c) .

(b) Solution 2. If one ant is at a vertex, then we can replace the remaining ants at the other vertices of
the fixed triangle. Suppose, wolog, the ant is at X in the side BC.

Let M N be the line joining the midpoints M and N of AB and AC respectively; MN|BC. Let XG
meet M N at W. Since BG: BN(=CG : CM) = 2: 3, it follows, by considering the similar triangles BGX
and NGW , that XG : XW = 2 : 3. Hence the midpoint of the segment joining the other two ants’ positions
must be at W. Thus, the problem now is to find points Y and Z on the perimeter of AABC such that W
is the midpoint of YZ. We use a continuity argument.

Let UV be any segment containing W whose endpoints lie on the perimeter of AABC. Let Y travel
counterclockwise around the perimeter from U to V, and let Z be a point on the perimeter such that W lies
onYZ. WhenY isat U, YW . WZ =VW : WV, while when Y isat V., YW : WZ =VW : WU. Hence
YW : WZ varies continuously from a certain ratio to its reciprocal, so there must be a position for which
YW =WZ.

(b) Solution 3. [A. Panayotov] Suppose that the triangle has vertices at (0,0), (1,0) and (u,v), so that
its centroid is at (3(1+wu), %). Wolog, let one ant be at (a,0) where 0 < a < 1. Put the second ant at (u,v).
Then we will place the third ant at a point (b,0) on the z—axis. We require that §(a + b+ u) = (1 + u),
so that b =1 — a. Clearly, 0 < b < 1 and the result follows.

656. Let ABC be a triangle and k be a real constant. Determine the locus of a point M in the plane of the
triangle for which

|MA*sin2A + |[MB|*sin 2B + |[MC|*sin2C =k .
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Solution. Let O and R be the circumcentre and circumradius, respectively, of triangle ABC. We have

that
IMAP? = |MAP? = |MO + OAP?
= |MOJ? + |OA? + 2MO - OA
= |MO|* + R? +2MO - OA

with similar expressions for M B and M C. Therefore, we have that

|IMA?sin2A + |[M B|?sin 2B + |[MC|? sin 2C = (|MO|* + R?)(sin 2A + sin 2B + sin 2C)
2MO - (OAsin2A + OBsin 2B + OC sin2C) .

Now
sin2A + sin 2B + sin 2C' = sin 24 + sin 2B — sin(24 + 2B)

=sin2A(1 — cos2B) +sin2B(1 — cos 2A)
= 2sin A cos A(2sin? B) 4 2sin B cos B(2sin® A)
= 4sin Asin Bsin(A 4+ B) = 4sin Asin BsinC
_ 2[ABC]
="

since [ABC] = absin C' = 2R?sin Asin BsinC.

Also, we have that
OAsin2A + OBsin2B + OCsin2C = O .

To see this, let P be the intersection of the line AO with the side BC of the triangle. Observe that
/BOP =180°—-2/ACB, /COP =180°—-2/ABC, /OBC = /OCB = 90° — /BAC'". Applying the Law of
Sines to triangle OPC' yields that

|OP| B |oC|
sin(90° — A)  sin(2C + A —90°) °

Since |OC| = R, we find that

_ —cos(2C + A) _ —2sin Acos(2C + A)
04 = cos A 0P| = 2sin Acos A 0P
sin 2B + sin 2C'
= smza 0P

so that

O — _sm2£?—|—sm200—}>) .
sin2A4

Applying the Law of Sines in triangle BOP and COP, we obtain that

loP|  |BP|
sin(90° — A)  sin2C

and
|OP| B |CP|

sin(90° — A)  sin2B
Therefore |[BP|sin2B = |C'P|sin 2C, so that

sin2BPB = — sin 2CPC
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and

OAsin2A + OBsin 2B + OC sin 2C = —(sin 2B + sin 2C)OP + sin 2BOB + sin 2C0C
= sin2B(0OB — OP) +sin2C(0C — OP)
— sin2BPB + sin2CPC = O .

Therefore (|MO|* + R?)(2[ABC]/R?) = k so that

o — k= 21480

2
SABC]

Therefore, when k < 2[ABC], the locus is the empty set. When k& = 2[ABC], the locus consists solely of the
circumcentre. When k > 2[ABC], the locus is a circle concentric with the circumcircle.

657. Let a,b, c be positive real numbers for which a + b + ¢ = abe. Find the minimum value of

1 1 1
w+ﬁ+w+w+w+§'

Solution 1. By repeated squaring it can be shown that

Va2 +u? + /2 + 02 > e+ u)? + (y+0)?
for z,y,u,v > 0. Applying this inequality yields that

1 1 1 1 1 1
1 1 1+ —= > 1+1)2 — 4+ )2 1+ —
Wa Wba Wcz—W TG W*cz

1 1 1
2¢@+U2Ha+b+g?

The given condition implies that b + 7o —|— -o» Whereupon

! + - + 1y’ >2 + ! 5 + + 224+ —+—+ ! =3
a b ¢ b2 b b ca '
It follows that the given expression is not less than 2v/3, with equality occurring if and only ifa = b = ¢ = /3.

Solution 2. [S. Sun] Using the inequality z2 + y? + 22 > xy + yz + 2z for real z,y, 2, we find that the
square of the quantity in question is not less than

(g femieg).

From the Arithmetic-Geometric Means Inequality, we find that

RN Lo/, 2 L, 1
teViteTVi et e teE sV Tater T T e

with similar inequalities for the other products. Since

1 1 1 at+b+c

ab  be  ca abe ’

we find that the square of the quantity in question is not less than 3 x 4 = 12, so that the quantity has the
minimum value 2\/5, attainable if and only isa =b=c= V3.
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Solution 3. Let A, B, C' be acute angles for which a = tan A, b = tan B and ¢ = tan C. Then

B a+b _ tan A + tan B
1—ab 1—tanAtanB
= —tan(A + B) = tan(m — A — B) ,

so that C' =1 — A — B. Substituting these values fo a, b, ¢ into the given expression yields
csc A+ csc B + cscC

. Since the cosecant function is convex in the interval (0,7/2), by Jensen’s inequality, we deduce that

A+B+C
csc A+ csec B+ csceC > 3cese <+3+) = 3CSC§ = 2\/3,

with equality if and only if A = B =C
with equality if and only isa =b=c=

7. Thus, the minimum of the given expression is equal to 2V/3

w

658. Prove that tan 20° + 4sin 20° = v/3.

Solution 1. [CJ. Bao] Since
(v/3/2) cos 20° — (1/2) sin 20° = sin 60° cos 20° — cos 60° sin 20° = sin 40° = 2sin 20° cos 20°

it follows that
V308 20° = sin 20° + 4 sin 20° cos 20°a .

Division by cos 20° yields the desired result.

Solution 2. Let ABC be a triangle with ZABC = 60° and ZCAB = 30°. Let ABD be a triangle on
the same side of AB with /ZABD = 40° and /DAB = 50°. Suppose that AC and BD intersect at E, and
that the length of BC' is 1, so that the respective lengths of CA and AB are v/3 and 2. Then

|AD| = |AB|sin40° = 4sin 20° cos 20°

and
|AE| = |AD|sec20° = |AB| cos 50° sec 20° = 2sin 40° sec 20° = 4sin 20° .

However, |CE| = |BC|tan20° = tan 20°. Therefore

tan20° +4sin20° = |CE| + |AE| = |AC| = NER

Solution 3. [M. Essafty]

sin 20° + 4 sin 20° cos 20°

cos 20°
sin 20° + 2 sin 40°

N cos 20°
_sin(30° — 10°) + 2sin(30° + 10°
cos(30° — 10°
~ 3sin 30° cos 10° + sin 10° cos 30°
~ cos30° cos 10° + sin 30° sin 10°
_ 3cos10° + /3 sin 10° _ 3.
V3 cos 10° + sin 10°

tan 20° + 4 sin 20° =
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Solution 4.

tan 20° + 4sin 20° — sin 20° + 4sin 20° cos 20°  sin 20° + 2sin 40°

cos 20° n cos 20°
__sin 40° + 2sin 30° cos 10° __sin 40° + sin 80°
o cos 20° o cos 20°
_ 2 sin 60° cos 20° _ 3.
cos 20°

Solution 5.

fan 20° 4 dsin 20° — sin 20° + 4 sin 20° cos 20° _ sin 20° + 2sin 40°
cos 20° cos 20°
sin 50° cos 30° — (1/2) cos 50° + 2sin 40°
cos 20°
sin 50° cos 30° + (1/2) cos 50° + cos 50°
cos 20°
sin80° + cos 50°  cos 10° + cos 50°
cos 20° B cos 20°
2c0830% cos20° V3

cos 20° o

Solution 6. Let a = cos20°. Then, using the de Moivre formula cos 30 + i sin 30 = (cos 6 + i sin §)3 with

0 = 20°, we find that

1
5 = cos 60° = 4a® — 3a
and
\/g . o .3 o . o 2 . o 2
5 = 3sin 20° — 4sin” 20° = sin20°(3 — 4(1 — a”)) =sin 20°(4a” — 1) .
Therefore

tan 20° 4 4sin 20° — v/3 = sin20°[(1/a) + 4 — 8a +2) = a ' sin 20°(1 + 6a — 8a®) = 0 .

Solution 7. [B. Wu]

sin 60° sin 20°
tan 60° — tan 20° = —
at an cos 60° cos 20°

in 40°
= cosgg'l’m = 4sin 20° cos 40°overcos 20° = 4 sin 20° ,

whence tan 20° 4+ 4sin 20° = /3.

659. (a) Give an example of a pair a, b of positive integers, not both prime, for which 2a —1,2b—1 and a+b

are all primes. Determine all possibilities for which a and b are themselves prime.

(b) Suppose a and b are positive integers such that 2a — 1, 2b — 1 and a + b are all primes. Prove that

neither a® 4+ b® nor a® + b* are multiples of a + b.

(a) First solution. (a,b) = (3,2) yields 2a —1 =5,2b—1 =3 and a+ b = 5; (a,b) = (3,4) yields
2a —1=5,2b—1="7and a+ b = 7. Suppose that ¢ and b are primes. Then for a + b to be prime, a + b
must be odd, so that one of @ and b, say b, is equal to 2. Thus, we require the a 4+ 2 and 2a — 1, along with

a, to be prime. This is true when a = 3.



Now suppose a is an odd prime exceeding 3. Then a = 41 (mod 6), so the only way a and a + 2 can
both be prime is for ¢ = —1 (mod 6), whence 2a — 1 = —3 (mod 6). Thus, 3 divides 2a — 1, and since
2a —12>9, 2a — 1 must be composite.

(b) Solution 1. We first recall a bit of theory. Let p be a prime. By Fermat’s Little Theorem, a?~! = 1
(mod p) whenever ged(a,p) = 1. Let d be the smallest positive integer for which a? = 1 (mod p). Then d
divides p — 1, and indeed divides any positive integer k for which a* = 41 (mod p). Now to the problem.

Since a + b is prime, a # b. Wolog, let a > b and let p = a + b. Then a = —b (mod p), so that
a’ +% = (=b)" + " = ((—1)" +b*7") .

Suppose, if possible, that p divides a® +b®. Then, since b < p, ged(b,p) = 1 and so b2~° = (—=1)**! (mod p).
It follows that
p2o—1 = plp—1—(a=b) = (-=1)**1 mod p .

Now 2b — 1 is prime, so that 2b — 1 must be the smallest exponent d for which bY = +1 (mod p). Hence
2b — 1 divides a — b, so that for some positive integer ¢, a — b = ¢(2b — 1), whence a = b+ 2bc — ¢ and so

2 —1=2b—1+(2b—1)2c= (20— 1)(2c+1) .

But 2a — 1 is prime and 2b—1 > 1, s0 2c+1 =1 and ¢ = 0. This is a contradiction. Hence p does not divide
a + b%.

Similarly, using the fact that a® + 0% = (=b)® + b* = b°((—1)?*~* + 1), we can show that p does not
divide a® + b°.

(b) Solution 2. [M. Boase] Suppose that a and b exist as specified. Exactly one of a and b is odd, since
a + b is prime. Let it be a. Modulo a + b, we have that

0=a’+0*=a’"+ (—a)*=a’ —a" = a%(a®"*—1) or a’(1—a®"?)

according as a < b or a > b. Hence al®*=* —1=0 (mod a +b). Nowa+b—1+|b—a|=2a—1or 2b—1,
and a®**~! =1 (mod a + b) (by Fermat’s Little Theorem). Hence a?*~! = a*~! =1 (mod a + b). Both
2a — 1 and 2b — 1 exceed 1 and are divisible by the smallest value of m for which a™ =1 (mod a + b). Since
both are prime, 2a — 1 = 2b — 1 = m, whence a = b, a contradiction. A similar argument can be applied to
a® + bb.

(c) Solution 3. Suppose, if possible, that one of a® + b* and a® + b is divisible by a + b. Then a + b
divides their product a®*® + (ab)® + (ab)® +b*+°. By Fermat’s Little Theorem, a®™? + 5% = a +b = 0 (mod
a+b), so that (ab)® + (ab)® =0 (mod a + b). Since a + b is prime, it is odd and so a # b. Wolog, let a > b.
Then

(ab)® + (ab)® = (ab)’[(ab)?~® 4 1]

and ged(a,a+b) = ged(b, a +b) = 1, so that (ab)*~?+1 =0 (mod a +b). Since (ab)?***~1 =1 (mod a +b),
it follows that (ab)?*~! = (ab)?**~! = —1 (mod a +b). As in the foregoing solution, it follows that a = b, and
we get a contradiction.

660. ABC is a triangle and D is a point on AB produced beyond B such that BD = AC, and E is a point
on AC produced beyond C' such that CE = AB. The right bisector of BC' meets DE at P. Prove that
/BPC = /BAC.

Solution 1. Let the lengths a, b, ¢,u and the angles a, 0, 7, A, u, v be as indicated in the diagram.

In the solution, we make use of the fact that if p/q = r/s, then both fractions are equal to (p+7r)/(g+s).
Since /DBP = 90° + XA — 203, it follows that

2 =180° — (90° — ) — (90° + A —28) =a +26— A .
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Similarly, 2v = a + 2y — A. Using the Law of Sines, we find that

a b c b+c B b+c
sin2a  sin23  sin2y  sin23+sin2y  2sin(8 4+ ) cos(B — )
b+c

2cosacos(f —7)

Hence
a b+ ¢

sina cos(B—7)

Since a = 2usin A and, by the Law of Sines,

U b U c
- = = and = = )
sin(90° —a)  sin2p sin(90° — a)  sin2v
we have that
a uw b e b+c
2sinAcosa  cosa  sin2u  sin2v  sin2u + sin2v
b+c b+c a

2sin(p + v) cos(pu — v) B 2cos Acos(fB — ) " 2cosAsina

Hence tana = tan X and so o = A.

Solution 2. Let M be the midpoint of BC. A rotation of 180° about M interchanges B and C and
takes ¥ to G, D to F and P to Q. Then AB = CE = BG and AC = BD = CF. Join GA and FA.
Let 2 = /BAC. Since AE||BG and AB is a transversal, /GBA = /BAC = 2a. Since AB = BG,
/BGA =90° — a. But /BGF = /CED =90° — a. Thus, G, A, F are collinear.

Since GF and DE are equidistant from M, we can use Cartesian coordinates with the origin at M,
the line y = 1 as GF and the line y = —1 as DE. Let A ~ (a,1), B ~ (—u,—mu), C' ~ (u,mu). Then
P~ (m7_1)7 Q ~ (_m7 1)7

2(a+u) 2(a+u)
Dr(a— 22" 1y, E~(a+ 2t 1),
Since |AC| = |BD|, we find that u —a = —u —a + %, or a = mu?. (We can check this by equating the
slopes of AC and AE.)
The slope of AE is —1/u and of AD is 1/u, so that
—(2/u) 2u

tan /BAC = 1= (1)) =-2_1"

The slope of CQ is (mu —1)/(m + u) and of BQ is (1 + mu)/(u — m), so that

(mu—1)(u —m) — (mu+ 1)(u+m)
(u—m)(u+m)+ (mu—1)(mu+1)

—2(m2u + u) o 2(mP+u . —2u
u2 —m2+m2u2 -1 (14+m2)(u2-1) u2—-1"

tan /BPC = tan /BQC =

The result follows.

Solution 3. [M. Boase] Let X AY be drawn parallel to DE.
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Since M is the midpoint of BC, the distance from M to DE is the average of the distances from B and
C to DE. Similarly, the distance from M to XY is the average of the distances from B and C to XY. The
distance of B (resp. C) to DE equals the distance of C (resp. B) to XY. Hence, M is equidistant from DFE
and XY. If PM produced meets XY in @), then PM = M@ and so /BQC = /BPC.

Select R on MQ (possibly produced) so that ZBAC = /BRC. Since AADE||ARBC, /RBC =
/RCB = /ADE. Since BARC is a concyclic quadrilateral, /BAR = 180° — /RCB = 180° — /ADFE =
180° — /X AD = /BAQ from which it follows that R = @ and so /BPC = /BQC = /BRC = /BAC.

Solution 4. [Jimmy Chui] Set coordinates: A ~ (0,(m + n)b), B ~ (—ma,nb), C ~ (na,mb) D ~
(—(m +n)a,0) and E ~ ((m + n)a,0) where m = |AB|, n = |AC| and a? + > = 1. Then the line BC has

the equation
m—nx_ m:ny+m2+n2 -0
a

and the right bisector of BC' has equation

m+n m—n (a? — b%)(m? —n?)

5 T+ a y+ 2ab =0 .
Thus
P~ ((b2 _“2)(m_”),0> :
2a
Now
|BC|> = m? + n? + 2mn(a® — b?)
and

m? 4+ n? + 2mn(a® — b?)

4a?
so that |BC|/|BP| = 2a. Also |DE|/|AD| = 2(m + n)a/(m + n) = 2a so that ABPC'is similar to AADE
and the result follows.

|BPJ? =

Solution 5. Determine points L and N on DE such that BL|AE and LN = NE. Now
LE _AB _CE
LD BD CA
so that CL||AD and CL : AD = CE : AE. Since AD = DE, CL = CFE and so CN L LE. Consider

the trapezoid CBLE. The line M N joins the midpoints of the nonparallel opposite sides and so M N||BL.
MPNC is a quadrilateral with right angles at M and IV, and so is concyclic. Hence

/BPC=2/MPC=2/MNC =2/NCE =/LCE =/BAC .

Solution 6. [C. So| Let F, N, G be the feet of the perpendiculars dropped from B, M, C respectively to
DE. Note that FN = NG, so that MF = MG. Let /ADE = /AED =0, |AB| = ¢, |AC| = b and h be
the altitude of AADE. Then

1 1 h
‘MU\”:§[|BF|+|CGH=§(b—i-c)sin€:5
and
|DF| =bcos , |GE|=ccosf, |DE|=2(b+c)cos .

Hence |FG| = |DE| —|DF|—|GE| = |DE|. Since AADE and AMFG are isosceles triangles with heights
and beses in proportion, they are similar so that /M FG = /ADFE = 0. Since /BFP = /BMG = 90°, the
quadrilateral BFPM is concyclic and so Z/CBP = /MFP = 6§ (we are supposing that the configuration is
labelled so P lies between F' and E). Hence AADE is similar to APCB and so /ZBPC = /BAC.
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Solution 7. [A. Chan] Let /ZADE = /AED = 0, so /BAC = 180° — 26. Suppose that ZACB = ¢,
/CPE = ¢ and /BCP = p. By the Law of Sines for triangles ABC and PCFE, we find that

2|PC|cosp  |AB|

sin 26 sin ¢
whence
sinc  |CE| |AB| 2cospsing
sind  |PC| |PC|  sin20
and
sino cosf =singcosp .
Therefore

sin(f + o) + sin(o — 6) = sin(¢ + p) + sin(¢p — p).

Since 8 + o = ¢ + p, sin(oc — @) = sin(¢ — p). Either (60 —6) + (¢ — p) = £180° or 0 — 0 = ¢ — p. In the first
case, since 0 + o = ¢ + p, |0 — p| = 90°, which is false.

Hence o — 0 = ¢ — p, so, with 0 + 0 = ¢ + p, we have that
20=0+(p+oc—@)=0+(p+p—0)=2p
and the result follows.

Solution 8. [A. Murali] Let F be the midpoint of BC. Observe that triangles ADE and PBC' are
isosceles with AD = AE and PB = PC. Suppose that the line parallel to AC through D and the line
parallel to AD through C meet at N, and let CN intersect DE at M. Since ACND is a parallelogram,
DN = AC. Since triangle CMFE is similar to triangle ADFE, it is isosceles with CM = CE = AB. Since
AD = CN, BMND is a parallelogram. In fact, MN = BD = AC' = DN = BM, so that BMND is a
rhombus.

Since P is a point on a diagonal of the rhombus BMND, PB = PN and so triangles PBM and
PNM are congrunent, from which we see that /PBM = /PNM. Since PC = PB = PN, it follows that
/PBM = /PNC = /PCM and quadrilateral BCM P is concyclic. Therefore, /BPC = /BMC = /BAC
(ABMC being a quadrilateral).

Solution 9. [C. Deng] If BC were parallel to DFE, then BC would be a midline of triangle ADE and
P would be the reflection of A in the axis BC yielding the desired result. Suppose that BC' and DFE are
not parallel. Let R be the circumradius of triangle ADFE, R; the circumradius of triangle BDP and Ry the
circumradius of triangle CEP. Observe that AD = AE and PB = PC.

Let the circumcircles of triangles BDP and CEP intersect at O. The point O lies inside triangle ADE.
By the Extended Sine Law,

OP _op PB PC Cop OP
sin/PBO ' sin/ADE sin/AED % sn/PCO

Since /PCO = /PEO < /PEA < 90°, the angle PCO is acute. Similarly, angle PBO is acute. Therefore
/PBO = /PCO, so that Z/OBC = /OCB and O is on the right bisector of BC'. Since

DO =2R,sin /DPO = 2Rysin /OPE = EO

, the point O is on the right bisector of DFE, which is also the angle bisector of /BAC.
Since the quadrilaterals OBDP and OCEP are concyclic,

/BOC = 360° — /BOP — LCOP
=36° — (180° — /BDP) — (180° — /CEP)
= /ADE + /AED = 180° — /BAC .
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Hence quadrilaterla ABOC is concyclic. Also /BCO = /CBO = %ZBAC.

From Ptolemy’s Theorem, we have that
BC-AO=AB-CO+ AC-BO =(AB+ AB-BO = AD-BO .

Therefore

BO sin /BCO sini/BAC AD
AO=AD - —= — AD .2 """~ _ . 2 — =
0 BC sin BOC 2sin /BAC  2cos %LBAC R

Since O is on the right bisector of DE and AO = R, O is the circumcentre of triangle ADE. Therefore

/BPC =/BPO+ (LCPO = /BDO+ (CEO = LOAB + LOAC = LA .
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