
Solutions for February

661. Let P be an arbitrary interior point of an equilateral triangle ABC. Prove that

|6 PAB − 6 PAC| ≥ |6 PBC − 6 PCB| .

Solution. The result is clear if P is on the bisector of the angle at A, since both sides of the inequality
are 0.

Wolog, let P be closer to AB than AC, and let Q be the image of P under reflection in the bisector of
the angle A. Then

6 PAQ = 6 PAC − 6 QAC = 6 PAC − 6 PAB

and
6 PCQ = 6 QCB − 6 PCB = 6 PBC − 6 PCB .

Thus, it is required to show that 6 PAQ ≥ 6 PCQ.

Produce PQ to meet AB in R and AC in S. Consider the reflection R with axis RS. The circumcircle
C of ∆ARS is carried to a circle C′ with chord RS. Since 6 RCS < 60◦ = 6 RAS and the angle subtended
at the major arc of C′ by RS is 60◦, the point C must lie outside of C′. The circumcircle D of ∆APQ is
carried by R to a circle D′ with chord PQ. Since D is contained in C, D′ must be contained in C′, so C
must lie outside of D′. Hence 6 PCQ must be less than the angle subtended at the major arc of D′ by PQ,
and this angle is equal to 6 PAQ. The result follows.

662. Let n be a positive integer and x > 0. Prove that

(1 + x)n+1 ≥ (n + 1)n+1

nn
x .

Solution 1. By the Arithmetic-Geometric Means Inequality, we have that

1 + x

n + 1
=

n(1/n) + x

n + 1
≥

[(
1
n

)n

x

] 1
n+1

so that
(1 + x)n+1

(n + 1)n+1
≥ x

nn

and the result follows.

Solution 2. (by calculus) Let

f(x) = nn(1 + x)n+1 − (n + 1)n+1x for x > 0 .

Then
f ′(x) = (n + 1)[nn(1 + x)n − (n + 1)n] = (n + 1)nn[(1 + x)n − (1 +

1
n

)n]

so that f ′(x) < 0 for 0 < x < 1/n and f ′(x) > 0 for 1/n < x. Thus f(x) attains its minimum value 0 when
x = 1/n and so f(x) ≥ 0 when x > 0. The result follows.

Solution 3. (by calculus) Let g(x) = (1+x)n+1x−1. Then g′(x) = (1+x)nx−2[nx− 1], so that g(x) < 0
for 0 < x < 1/n and g′(x) > 0 for x > 1/n. Therefore g(x) assumes its minimum value of (n + 1)n+1n−n

when x = 1/n, and the result follows.
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Solution 4. [G. Ghosn] We make the substituion t = (nx)1/(n+1) ⇔ x = tn+1/n. Then it is required to
prove that

1 +
tn+1

n
≥ (n + 1)t

n
.

Observe that

tn+1 − (n + 1)t− n = t(tn − 1)− n(t− 1) = (t− 1)(tn + tn−1 + · · ·+ t− n)

= (t− 1)[(tn − 1) + (tn−1 − 1) + · · ·+ (t− 1)]

= (t− 1)2[tn−1 + 2tn−2 + · · ·+ (n− 1)] ≥ 0 ,

for t > 0. The desired result follows.

Solution 5. Let u = nx− 1 so that x = (1 + u)/n. Then

(1 + x)n+1 − (n + 1)n+1

nn
x = (1 +

1
n

+
u

n
)n+1 − (1 +

1
n

)n+1(1 + u)

= (1 +
1
n

)n+1 + (n + 1)(1 +
1
n

)n u

n
+

(
n + 1

2

)
(1 +

1
n

)n−1(
u

n
)2

+
(

n + 1
3

)
(1 +

1
n

)n−2(
u

n
)3 + · · · − (1 +

1
n

)n+1(1 + u)

=
(

n + 1
2

)
(1 +

1
n

)n−1(
u

n
)2 +

(
n + 1

3

)
(1 +

1
n

)n−2(
u

n
)3 + · · · .

This is clearly nonnegative when u ≥ 0. Suppose that −1 < u < 0. For 1 ≤ k ≤ n/2, we have that(
n + 1
2k

)
(1 +

1
n

)n−2k+1(
u

n
)2k +

(
n + 1
2k + 1

)
(1 +

1
n

)n−2k(
u

n
)2k+1

=
(n + 1)!(1 + 1/n)n−2k

(2k + 1)!(n + 1− 2k)!

(
u

n

)2k

[(2k + 1)(1 +
1
n

) + (n + 1− 2k)(
u

n
)] .

This will be nonnegative if and only if the quantity in square brackets is nonnegative. Since u > −1, this
quantity exceeds

(2k + 1)(1 +
1
n

)− (n + 1− 2k)(
1
n

) =
(

n + 1
n

)
(2k + 1− 1)− 2k

n
= 2k > 0 .

Thus, each consecutive pair of terms in the sequence(
n + 1

2

)
(1 +

1
n

)n−1(
u

n
)2 +

(
n + 1

3

)
(1 +

1
n

)n−2(
u

n
)3 + · · ·

has a positive sum and so the desired result follows.

663. Find all functions f : R −→ R such that

x2y2(f(x + y)− f(x)− f(y)) = 3(x + y)f(x)f(y)

for all real numbers x and y.

Solution. An obvious solution if f(x) ≡ 0. We consider other possibilities.

Setting y = 0 yields that 0 = 3xf(x)f(0) for all x. Setting y = −x yields that x4[f(0)−f(x)−f(−x)] = 0,
so that f(0) = f(x) + f(−x) for all nonzero x. Suppose, if possible, that f(0) 6= 0. Then, if x 6= 0, we
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must have that f(x) = 0, so that f(0) = f(x) + f(−x) = 0, a contradiction. Therefore, f(0) = 0 and so
f(x) = −f(−x) for all real x.

Setting y = x yields that

f(2x) =
6
x3

f(x)2 + 2f(x)

for all nonzero x, while the sum x = 2x + (−x) leads to

4x4[2f(x)− f(2x)] = 3xf(2x)f(−x) = −3xf(2x)f(x) .

Therefore

4x3

[
6
x3

f(x)2
]

= 3
[

6
x3

f(x)2 + 2f(x)
]
f(x)

so that
8x3f(x)2 = 6f(x)3 + 2x3f(x)2

or
f(x)3 = x3f(x)2 .

Therefore, for each real x, either f(x) = 0 or f(x) = x3.

Suppose that f(z) = 0 for some real z; note that y 6= 0. Select x so that f(x) 6= 0 and let y = z − x.
Then, since x2y2[−f(x)− f(y)] = 3zf(x)f(y), f(y) 6= 0. Thus f(x) = x3, f(y) = y3 so that

−x2y2(x3 + y3) = 3(x + y)x3y3 .

This simplifies to
0 = x2y2(x + y)(x2 + 2xy + y2) = x2y2(x + y)3

with the result that z = x + y = 0. Therefore f(x) = x3 for all real x (including 0).

Comment. J. Seaton deserves credit for the argument that, if f(x) = 0 for all nonzero x, then f(0) = 0
as well.

664. The real numbers x, y, and z satisfy the system of equations

x2 − x = yz + 1;

y2 − y = xz + 1;

z2 − z = xy + 1.

Find all solutions (x, y, z) of the system and determine all possible values of xy + yz + zx + x + y + z
where (x, y, z) is a solution of the system.

Solution. First we dispose of the situation that not all the variables takes distinct values. If x = y = z,
then the equations reduce to x = −1, so that (x, y, z) = (−1,−1,−1) is a solution and x+y+z+xy+yz+zx =
0.

By subtracting equations in pairs, we find that

0 = (x− y)(x + y + z − 1) = (y − z)(x + y + z − 1) = (z − x)(x + y + z − 1) .

Suppose that x 6= y = z. Then we must have x + 2y = 1 and x2 − x = y2 + 1, so that 0 = 3y2 − 2y − 1 =
(3y + 1)(y − 1). This leads to the two soutions (x, y, z) = (−1, 1, 1), ( 5

3 ,− 1
3 ,− 1

3 ). Symmetric permutations
of these also are solutions and we find that x + y + z + xy + yz + zx = 0.

Henceforth, assume that the values of x, y, z are distinct. Any solution x, y, z of the system must satisfy
the cubic equation

t3 − t2 − t = xyz .
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In particular, from the coefficients, we find that x+ y + z = 1 and xy + yz + zx = −1 whence xy + yz + zx+
x + y + z = 1.

Conversely, suppose that we take any real number w. Let x, y, z be the roots of the cubic equation

t3 − t2 − t = w .

Then xyz = w. If w = 0, then the cubic equation has the roots {0, 1
2 (1 +

√
5), 1

2 (1 −
√

5)} and it can be
checked that assigning these as the values of x, y and z any order will yields a solution to the given equation.
If w 6= 0, then plugging the roots into the equation and dividing by it will yield the given system.

All that remains is to discover which values of w will yield three real roots for the cubic. Let f(t) =
t3 − t2 − t. This function assumes a maximum value of 5/27 at t = −1/3 and a minimum value of −1 when
t = 1. Thus f(t) assumes each value in the closed interval [−1, 5/27] three times, counting multiplicity, and
each other real value exactly once.

Thus, the solutions of the system are the roots of the cubic equation t3 − t2 − t = w, where w is any
real number selected from the interval [−1, 5/27].

(Note, that the “extreme” solutions are (x, y, z) = (1, 1,−1), (−1/3,−1/3, 5/3). The only solution not
related to the cubic is (x, y, z) = (−1,−1,−1).)

Comment. G. Ajjanagadde, in the case of distinct values of x, y and z, obtained the equations x+y+z =
1 and xy + yz + zx = −1, whence, for given value of x, we get the system y + z = 1−x and yz = x2−x− 1,
so that y and z are solutions of the quadratic equation

t2 − (1− x)t + (x2 − x− 1) = 0 .

The discriminant of this quadratic is

(1− x)2 − 4(x2 − x− 1) = −3x2 + 2x + 5 = −(3x− 5)(x + 1) .

Thus, we will obtain real values of x, y, z if and only if x, y and z lies between −1 and 5/3 inclusive.

665. Let f(x) = x3 + ax2 + bx + b. Determine all integer pairs (a, b) for which f(x) is the product of three
linear factors with integer coefficients.

Solution. If b = 0, then the polynomial becomes x2(x + a), which satisfies the condition for all values of
a. This covers the situation for which x is a factor of the polynomial. Since the leading coefficient of f(x) is
1, the same must be true (up to sign) of its factors. Assume that f(x) = (x + u)(x + v)(x + w) for integers
u, v and w with uvw 6= 0. Since uvw = uv + vw + wu = b,

1
u

+
1
v

+
1
w

= 1 .

It is clearly not possible for all of u, v and w to be negative. Nor can it occur that two of them, say v and
w can be negative, for then the left side would be less than 1/u ≤ 1. Suppose that u and v are positive,
while w is negative. One possibility is that u = 1 and v = −w in which case f(x) = (x + 1)(x2 − v2) =
x3 + x2 − v2x − v2. If neither u nor v is equal to 1, then 1/u + 1/v + 1/w < 1/u + 1/v ≤ 1, and this case
is not possible. Finally, suppose that u, v and w are all positive, with u ≤ v ≤ w. Then 1 ≤ 3/u, so that
u ≤ 3. A little trial and error leads to the possibilities (u, v, w) = (3, 3, 3), (2, 4, 4) and (2, 3, 6). Thus the
possibilities for (a, b) are (u, 0), (1,−v2), (9, 27), (10, 32) and (11, 36). Indeed, x3 +9x2 +27x+27 = (x+3)3,
x3 + 10x2 + 32x + 32 = (x + 2)(x + 4)2 and x3 + 11x2 + 36x + 36 = (x + 2)(x + 3)(x + 6).

666. Assume that a face S of a convex polyhedron P has a common edge with every other face of P. Show
that there exists a simple (nonintersecting) closed (not necessarily planar) polygon that consists of edges
of P and passes through all the vertices.
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Solution. Suppose that the face S has m vertices A1, A2, · · ·, Am listed in order, and that there are n
vertices of P not contained in S. We prove the result by induction on n. If n = 1, then every face abutting S
is a triangle. Let X be the vertex off S; then A1 · · ·AmXA1 is a polygonal path of the desired type. Suppose
that the result holds for any number of vertices m of S and for n vertices off S where 1 ≤ n ≤ k. Consider
the case n = k + 1.

Consider the graph G of all vertices of P and those edges of P not bounding S. Since there are no faces
bounded solely by these edges, the graph must be a tree (i.e., it contains no loops and there is a unique path
joining any pair of points). We show that there is at least one vertex X not in S for which every edge but
one must connect X to a vertex of S. Suppose otherwise. Then, let us start with such a vertex X and form
a sequence X1, X2, · · · of vertices not in S such that XiXi+1 are edges of P. Since the number of vertices
off S is finite, there must be i < j for which Xi = Xj so that XiXi+1 · · ·Xj−1Xj is a loop in G. But this
contradicts the fact that G is a tree.

Hence there is a vertex X with at most one adjacent edge not connecting it to S. If there were no such
edge, then X would be the only vertex not in S, contradicting k + 1 ≥ 2. Hence there is a vertex Y not in
S such that XY is an edge of P. We may assume that Y is further from the plane of S than S. (If not,
suppose that S is in the plane z = 0 and that P lies in the quadrant z > 0, y > 0 with Y further than X
from the plane y = 0. We can transform P by a mapping of the type (x, y, z) → (x, y, z + λy) for suitable
positive λ. This will not alter the configuration of vertices and edges.) Extend Y X to a point Z in the plane
of S. Let Q be the convex hull of (smallest closed convex set containing) Z and P. This will have a side
T containing S of the form A1A2 · · ·ArZAs · · ·Am where r < s. The triangles XZAr and XZAs will be
coplanar with faces of P, and the convex hull will have at most k vertices not on T . Every face of Q will
abut T . By the induction hypothesis, we can construct a polygon containing each vertex of Q. If an edge of
this polygon is Y Z and so includes X, and if one edge is say ZAr, then we can replace these two edges by
Y XAsAs−1 · · ·Ar+1Ar. If Y Z is not an edge of this polygon, but ArZ and ZAs are, then we can replace
these edges by ArXAr+1 · · ·As. In both cases, we obtain a polygon of the required type for P.

667. Let An be the set of mappings f : {1, 2, 3, · · · , n} −→ {1, 2, 3, · · · , n} such that, if f(k) = i for some i, then
f also assumes all the values 1, 2, · · · , i−1. Prove that the number of elements of An is

∑∞
k=0 kn2−(k+1).

Solution 1. Let u0 = 1 and, for n ≥ 1, let un be the number of elements in An. Let 1 ≤ r ≤ n. Consider
the set of mappings in An for which the value 1 is assumed exactly r times. Then 1 ≤ r ≤ n. Then each
such mapping takes a set of n − r points onto a set of the form {2, 3, · · · , s} where s − 1 ≤ n − r ≤ n − 1.
Hence, there are un−r such mappings. Since there are

(
n
r

)
possible sets on which a mapping may assume the

value 1 r times,

un =
n∑

r=1

(
n

r

)
un−r =

n−1∑
r=0

(
n

r

)
ur .

Now u0 = 1 =
∑∞

k=0 1/2k+1. Assume, as an induction hypothesis, that ur =
∑∞

k=0 kr/2k+1 for 0 ≤ r ≤ n−1.
Then

un =
n−1∑
r=0

(
n

r

)
ur =

n−1∑
r=0

(
n

r

) ∞∑
k=0

kr

2k+1

=
∞∑

k=0

1
2k+1

n−1∑
r=0

(
n

r

)
kr =

∞∑
k=0

1
2k+1

[(1 + k)n − kn]

=
∞∑

k=0

(1 + k)n

2k+1
−

∞∑
k=0

kn

2k+1
=

∞∑
k=1

kn

2k
−

∞∑
k=1

kn

2k+1

=
∞∑

k=1

kn

2k+1

and the result follows. (The interchange of the order of summation and rearrangement of terms in the infinite
sum can be justified by the absolute convergence of the series.)
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Solution 2. For 1 ≤ i, let vi be the number of mappings of {1, 2, · · · , n} onto a set of exactly i elements.
Observe that vi = 0 when i ≥ n + 1. There are kn mappings of {1, 2, · · · , n} into {1, 2, · · · , k}, of which vk

belong to An. The other kn − vk mappings will leave out i numbers in the range for some 1 ≤ i ≤ k − 1,
and the i numbers not found can be selected in

(
k
i

)
ways. Thus

kn =
k∑

i=1

(
k

i

)
vi .

Hence
∞∑

k=0

kn

2k+1
=

∞∑
k=0

k∑
i=1

(
k
i

)
vi

2k+1
=

∞∑
k=0

n∑
i=1

(
k
i

)
vi

2k+1

=
n∑

i=1

( ∞∑
k=0

(
k
i

)
2k+1

)
vi =

n∑
i=1

( ∞∑
k=i

(
k
i

)
2k+1

)
vi .

We evaluate the inner sum. Fix the positive integer i. Suppose that we flip a fair coin an indefinite number
of times, and consider the event that the (i + 1)th head occurs on the (k + 1)th toss. Then the previous i
heads could have occurred in

(
k
i

)
posible positions, so that the probability of the event is

(
k
i

)
2−(k+1). Since

the (i + 1)th head must occur on some toss with probability 1,
∑∞

k=i

(
k
i

)
2−(k+1) = 1. Hence

∞∑
k=0

kn

2k+1
=

n∑
i=1

vi = #An .

Solution 3. [C. Deng] Let sn =
∑∞

k=0 kn2−(k+1); note that s0 = s1 = 1. Let w0 = 1 and wn = #An for
n ≥ 1, so that, in particular, w1 = 1.

For n ≥ 0,

sn+1 = 2sn+1 − sn+1 = 2
∞∑

k=0

kn+12−(k+1) −
∞∑

k=0

kn+12−(k+1)

=
∞∑

k=0

[(k + 1)n+1 − kn+1]2−(k+1)

=
∞∑

k=0

( n∑
i=0

(
n + 1

i

)
ki

)
2−(k+1)

=
n∑

i=0

( ∞∑
k=0

(
n + 1

i

)
ki2−(k+1)

)

=
n∑

i=0

(
n + 1

i

)
si .

We now show that wn satisfies the same recursion. Suppose that g is an arbitrary element of An+1

and that its maximum appears n + 1 − i times, where 0 ≤ i ≤ n. Then there are
(
n+1

i

)
ways to choose

the i remaining slots to fill with numbers without leaving gaps in the range, and then we can fill in the
remaining n + 1 − i slots with one more than the largest number in the range of the i slots. Thus, we find
that wn+1 =

∑n
i=0

(
n+1

i

)
wi. The desired result now follows, since s0 = w0.
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