Solutions for November

647. Find all continuous functions $f: \mathbf{R} \rightarrow \mathbf{R}$ such that

$$
f(x+f(y))=f(x)+y
$$

for every $x, y \in \mathbf{R}$.
Solution 1. Setting $(x, y)=(t, 0)$ yields $f(t+f(0))=f(t)$ for all real t. Setting $(x, y)=(0, t)$ yields $f(f(t))=f(0)+t$ for all real t. Hence $f(f(f(t)))=f(t)$ for all real t, i.e., $f(f(z))=z$ for each z in the image of f. Let $(x, y)=(f(t),-f(0))$. Then

$$
f(f(t)+f(-f(0)))=f(f(t))-f(0)=f(0)+t-f(0)=t
$$

so that the image of f contains every real and so $f(f(t)) \equiv t$ for all real t.
Taking $(x, y)=(u, f(v))$ yields

$$
f(u+v)=f(u)+f(v)
$$

since $v=f(f(v))$ for all real u and v. In particular, $f(0)=2 f(0)$, so $f(0)=0$ and $0=f(-t+t)=f(-t)+$ $f(t)$. By induction, it can be shown that for each integer n and each real $t, f(n t)=n f(t)$. In particular, for each rational $r / s, f(r / s)=r f(1 / s)=(r / s) f(1)$. Since f is continuous, $f(t)=f(t \cdot 1)=t f(1)$ for all real t. Let $c=f(1)$. Then $1=f(f(1))=f(c)=c f(1)=c 2$ so that $c= \pm 1$. Hence $f(t) \equiv t$ or $f(t) \equiv-t$. Checking reveals that both these solutions work. (For $f(t) \equiv-t, f(x+f(y))=-x-f(y)=f(x)+y$, as required.)

Solution 2. Taking $(x, y)=(0,0)$ yields $f(f(0))=f(0)$, whence $f(f(0)))=f(f(0))=f(0)$. Taking $(x, y)=(0, f(0))$ yields $f(f(f(0)))=2 f(0)$. Hence $2 f(0)=f(0)$ so that $f(0)=0$. Taking $x=0$ yields $f(f(y))=y$ for each y. We can complete the solution as in the Second Solution.

Solution 3. [J. Rickards] Let $(x, y)=(x,-f(x))$ to get

$$
f(x+f(-f(x))=f(x)-f(x)=0
$$

for all x. Thus, there is at least one element u for which $f(u)=0$. But then, taking $(x, y)=(0, u)$, we find that $f(0)=f(0+f(u))=f(0)+u$, so that $u=0$.

Therefore $f(f(y))=y$ for each y, so that f is a one-one onto function. Also, $x+f(-f(x))=0$, so that $-f(x)=f(f(-f(x))=f(-x)$ for each value of x.

Since $f(x)$ is continuous and vanishes only for $x=0$, we have either $(1) f(x)$ is positive for $x>0$ and negative for $x<0$, or (2) $f(x)$ is negative for $x>0$ and positive for $x<0$. Suppose that situation (1) obtains. Then, for every real number $x, f(x-f(x))=f(x+f(-x))=f(x)-x=-(x-f(x))$. Since $f(x-f(x))$ and $x-f(x)$ have the same sign, we must have $f(x)=x$. Suppose that situation (2) obtains. Then, for every real $x, f(x+f(x))=f(x)+x$, from which we deduce that $f(x)=-x$. Therefore, there are two functions $f(x)=x$ and $f(x)=-x$ that satisfy the equation and both work.
648. Prove that for every positive integer n, the integer $1+5^{n}+5^{2 n}+5^{3 n}+5^{4 n}$ is composite.

Solution. Observe the following representations:

$$
\begin{equation*}
x 8+x 6+x 4+x 2+1=(x 4+x 3+x 2+x+1)(x 4-x 3+x 2-x+1) . \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
x 4+x 3+x 2+x+1=(x 2+3 x+1) 2-5 x(x+1) 2 . \tag{2}
\end{equation*}
$$

When $n=2 k$ is even, we can substitute $x=5^{k}$ into equation (1) to get a factorization. When $n=2 k-1$ is odd, we can substitute $x=5^{2 k-1}$ into equation (2) to get a difference of squares, which can then be factored.
649. In the triangle $A B C, \angle B A C=20^{\circ}$ and $\angle A C B=30^{\circ}$. The point M is located in the interior of triangle $A B C$ so that $\angle M A C=\angle M C A=10^{\circ}$. Determine $\angle B M C$.

Solution 1. [S. Sun] Construct equilateral triangle $M D C$ with M and D on opposite sides of $A C$ and equilateral triangle $A M E$ with M and Z on opposite sides of $A B$. Since $A M=M C$, these equilateral triangles are congruent. Since $A M=M D$ and

$$
\angle A M D=\angle A M C-\angle D M C=160^{\circ}-60^{\circ}=100^{\circ}
$$

$\angle M A D=\angle M D A=40^{\circ}$. Since $M E=A M=M C$, triangle $E M C$ is isosceles. Since

$$
\angle E M C=360^{\circ}-\angle E M A-\angle A M C=360^{\circ}-60^{\circ}-160^{\circ}=140^{\circ}
$$

$\angle E M C=\angle M C E=20^{\circ}$. As $\angle M C B=20^{\circ}=\angle M C E, E, B, C$ are collinear. Now

$$
\begin{aligned}
\angle E B A & =\angle B A C+\angle B C A=20^{\circ}+30^{\circ}=50^{\circ} \\
& =60^{\circ}-10^{\circ}=\angle E A M-\angle B A M=\angle E A B
\end{aligned}
$$

so that $B E=A E=M E$ and triangle $B E M$ is isosceles. Since $\angle B E M=\angle B E A-\angle M E A=80^{\circ}-60^{\circ}=20^{\circ}$, it follows that

$$
\angle B M C=360^{\circ}-\angle E M B-\angle E M A-\angle A M C=360^{\circ}-80^{\circ}-60^{\circ}-160^{\circ}=60^{\circ}
$$

Solution 2. Let O be the circumcentre of the triangle $B A C$; this lies on the opposite side of $A C$ to B. Since the angle subtended at the centre by a chord is double that subtended at the circumference, we have that

$$
\angle A O C=2\left(180^{\circ}-\angle A B C\right)=2\left(180^{\circ}-130^{\circ}\right)=100^{\circ}
$$

The right bisector of the segment $A C$ passes through the apex of the isosceles triangle $M A C$ and the centre O of the circumcircle of triangle $B A C$. We have that $\angle A O M=50^{\circ}, \angle A M O=\frac{1}{2} \angle A M C=80^{\circ}$, and

$$
\angle M A O=180^{\circ}-50^{\circ}-80^{\circ}=50^{\circ}
$$

Therefore, triangle $M A O$ is isosceles with $M A=M O$.
Observe that $\angle B A O=\angle B A C+\angle M A O-\angle M A C=60^{\circ}$ and that $A O=B O$, so that triangle $B A O$ is equilateral and so $B A=B O$. Since B and M are both equidistant from A and O, the line $B M$ must right bisect the segment $A O$ at N, say. Therefore, $\angle M N O=90^{\circ}$, so that $\angle N M O=40^{\circ}$. It follows that

$$
\angle B M C=180^{\circ}-\angle C M O-\angle N M O=180^{\circ}-80^{\circ}-40^{\circ}=60^{\circ}
$$

Solution 3. [M. Essafty] Let $\alpha=\angle M B A$, so that $\angle M B C=130^{\circ}-\alpha$. From the trigonometric version of Ceva's Theorem, we have that

$$
\begin{gathered}
\sin \alpha \sin 20^{\circ} \sin 10^{\circ}=\sin \left(130^{\circ}-\alpha\right) \sin 10^{\circ} \sin 10^{\circ} \\
\Rightarrow 2 \sin \text { alpha } \sin 10^{\circ} \cos 10^{\circ}=\sin \left(130^{\circ}-\alpha\right) \sin 10^{\circ} \\
\Rightarrow 2 \sin \alpha \cos 10^{\circ}=\cos \left(40^{\circ}-\alpha\right)=\cos 40^{\circ} \cos \alpha+\sin 40^{\circ} \sin \alpha
\end{gathered}
$$

Dividing both sides by $\cos 40^{\circ} \cos \alpha$ yields that

$$
2 \cos \alpha\left(\frac{2 \cos 10^{\circ}}{\cos 40^{\circ}}-\frac{\sin 40^{\circ}}{\cos 40^{\circ}}\right)=1
$$

Therefore

$$
\begin{aligned}
\cot \alpha & =\frac{\cos 10^{\circ}+\cos 10^{\circ}-\cos 50^{\circ}}{\cos 40^{\circ}} \\
& =\frac{\cos 10^{\circ}+2 \sin 30^{\circ} \sin 20^{\circ}}{\cos 40^{\circ}} \\
& =\frac{\cos 10^{\circ}+\sin 20^{\circ}}{\cos 40^{\circ}}=\frac{\cos 10^{\circ}+\cos 70^{\circ}}{\cos 40^{\circ}} \\
& =\frac{2 \cos 40^{\circ} \cos 30^{\circ}}{\cos 40^{\circ}}=2 \cos 30^{\circ}=\sqrt{3}
\end{aligned}
$$

Therefore $\alpha=30^{\circ}$.
650. Suppose that the nonzero real numbers satisfy

$$
\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x y z}
$$

Determine the minimum value of

$$
\frac{x 4}{x 2+y 2}+\frac{y 4}{y 2+z 2}+\frac{z 4}{z 2+x 2}
$$

Solution 1. [W. Fu] Let $f(x, y, z)$ denote the expression

$$
\frac{x 4}{x 2+y 2}+\frac{y 4}{y 2+z 2}+\frac{z 4}{z 2+x 2} .
$$

Then

$$
\begin{aligned}
f(x, y, z) & -f(x, z, y)=\left(\frac{x 4}{x 2+y 2}+\frac{y 4}{y 2+z 2}+\frac{z 4}{z 2+x 2}\right)-\left(\frac{x 4}{x 2+z 2}+\frac{z 4}{z 2+y 2}+\frac{y 4}{y 2+x 2}\right) \\
& =\frac{x 4-y 4}{x 2+y 2}+\frac{y 4-z 4}{y 2+z 2}+\frac{z 4-x 4}{z 2+x 2} \\
& =(x 2-y 2)+(y 2-z 2)+(z 2-x 2)=0
\end{aligned}
$$

Thus, $f(x, y, z)=f(x, z, y)$ and

$$
\begin{aligned}
f(x, y, z) & =\frac{1}{2}(f(x, y, z)+f(x, z, y)) \\
& =\frac{1}{2}\left[\frac{x 4+y 4}{x 2+y 2}+\frac{y 4+z 4}{y 2+z 2}+\frac{z 4+x 4}{z 2+x 2}\right] \\
& =\frac{1}{2}\left[\left(x 2+y 2-\frac{2 x^{2} y 2}{x 2+y 2}\right)+\left(y 2+z 2-\frac{2 y^{2} z 2}{y 2+z 2}\right)+\left(z 2+x 2-\frac{2 z^{2} x 2}{z 2+x 2}\right)\right] \\
& =(x 2+y 2+z 2)-\frac{1}{2}\left(\frac{2 x^{2} y 2}{x 2+y 2}+\frac{2 y^{2} z 2}{y 2+z 2}+\frac{2 z^{2} x 2}{z 2+x 2}\right)
\end{aligned}
$$

Observe that

$$
x 2+y 2+z 2=\frac{1}{2}[(x 2+y 2)+(y 2+z 2)+(z 2+x 2)] \geq x y+y z+z x=1
$$

and that $2 x^{2} y 2 \leq x 4+y 4$. Hence

$$
\begin{aligned}
f(x, y, z) & \geq 1-\frac{1}{2}\left(\frac{x 4+y 4}{x 2+y 2}+\frac{y 4+z 4}{y 2+z 2}+\frac{x 4+x 4}{z 2+x 2}\right) \\
& =1-\frac{1}{2}[f(x, y, z)+f(x, z, y)]=1-f(x, y, z)
\end{aligned}
$$

from which $f(x, y, z) \geq \frac{1}{2}$. Equality occurs if and only if $x=y=z=1 / \sqrt{3}$.
Solution 2. [S. Sun] From the Arithmetic-Geometric Means Inequality, we have that

$$
\frac{x 4}{x 2+y 2}+\frac{1}{4}(x 2+y 2) \geq x 2
$$

with a similar inequality for the other pairs of variables. Adding the three inequalities obtained, we find that

$$
\frac{x 4}{x 2+y 2}+\frac{y 4}{y 2+z 2}+\frac{z 4}{z 2+x 2}+\frac{1}{2}(x 2+y 2+z 2) \geq x 2+y 2+z 2
$$

from which

$$
\frac{x 4}{x 2+y 2}+\frac{y 4}{y 2+z 2}+\frac{z 4}{z 2+x 2} \geq \frac{1}{2}(x 2+y 2+z 2),
$$

with equality if and only if $x=y=z$. Since $(x-y) 2+(y-z) 2+(z-x) 2 \geq 0$, it follows that $x 2+y 2+z 2 \geq$ $x y+y z+z x=1$. Therefore

$$
\frac{x 4}{x 2+y 2}+\frac{y 4}{y 2+z 2}+\frac{z 4}{z 2+x 2} \geq \frac{1}{2}
$$

with equality if and only if $x=y=z=1 / \sqrt{3}$.
Solution 3. [K. Zhou; G. Ajjanagadde; M. Essafty] Since $(x-y) 2 \geq 0$, etc., we have that $x 2+y 2+z 2 \geq$ $x y+y z+z x$. By the Cauchy-Schwarz Inequality, we have that

$$
\begin{aligned}
{\left[\left(\frac{x 2}{\sqrt{x 2+y^{2}}}\right) 2+\left(\frac{y 2}{\sqrt{y 2+z 2}}\right) 2\right.} & \left.+\left(\frac{z 2}{\sqrt{z 2+x 2}}\right) 2\right]\left[\left(\sqrt{x 2+y^{2}}\right) 2+(\sqrt{y 2+z 2}) 2+(\sqrt{z 2+x 2}) 2\right] \\
& \geq(x 2+y 2+z 2) 2,
\end{aligned}
$$

whence

$$
\left(\frac{x 4}{x 2+y 2}+\frac{y 4}{y 2+z 2}+\frac{z 4}{z 2+x 2}\right)[(x 2+y 2)+(y 2+z 2)+(z 2+x 2)] \geq(x 2+y 2+z 2) 2,
$$

so that

$$
\frac{x 4}{x 2+y 2}+\frac{y 4}{y 2+z 2}+\frac{z 4}{z 2+x 2} \geq \frac{x 2+y 2+z 2}{2} \geq \frac{x y+y z+z x}{2}=\frac{1}{2} .
$$

Equality occurs when $x=y=z=1 / \sqrt{3}$.
Solution 4. Observe that the given condition is equivalent to $x y+y z+z x=1$. Since the expression to be minimized is the same when (x, y, z) is replaced by $(-x,-y,-z)$ and since two of the variables must have the same sign, we may assume that x and y are both positive.

Suppose, first, that $z>0$. Since $x 2+y 2 \geq 2 x y$, we have that

$$
\frac{x 4}{x 2+y 2}=x 2-\frac{x^{2} y 2}{x 2+y 2} \geq x 2-\frac{x y}{2},
$$

with similar inequalities for the other pairs of variables. Therefore, the expression to be minimized is not less that

$$
(x 2+y 2+z 2)-\frac{1}{2}(x y+y z+z x) \geq(x y+y z+z x)-\frac{1}{2}(x y+y z+z x)=\frac{1}{2} .
$$

Equality occurs if and only if $x=y=z=1 / \sqrt{3}$.
Regardless of the signs of the variables, if the largest of $x 2, y 2, z 2$ is at least 2 , we show that the expression is not less that 1 . For example, if $x 2 \geq 2, x 2 \geq y 2$, we find that

$$
\frac{x 4}{x 2+y^{2}} \geq \frac{x 4}{2 x 2}=\frac{x 2}{2} \geq 1 .
$$

Henceforth, assume that $x 2, y 2, z 2$ are less than 2 and that $z<0$. Then $x y<2$. Since $0>z=$ $(1-x y) /(x+y)$, then $x y>1$, so that $x+y \geq 2 \sqrt{x y}>2$. Hence

$$
|z|=\frac{x y-1}{x+y} \leq \frac{1}{2}
$$

If $x>y$, then (because $x y>1$), $x>1$, so that

$$
\frac{x 4}{x 2+y 2}>\frac{x 4}{2 x 2}>\frac{1}{2}
$$

If $y>z$, then $y>1>|z|$ and

$$
\frac{y 4}{y 2+z 2}>\frac{y 4}{2 y 2}>\frac{1}{2}
$$

In any case, when $z<0$, the quantity to be minimized exceeds $1 / 2$. Therefore, the minimum value is $1 / 2$, achieved when $(x, y, z)=\left(3^{-1 / 2}, 3^{-1 / 2}, 3^{-1 / 2}\right)$.

Solution 5. [B. Wu] We first establish a lemms: if a, b, u, v are positive, then

$$
\frac{a 2}{u}+\frac{b 2}{v} \geq \frac{(a+b) 2}{u+v}
$$

with equality if and only if $a: u=b: v$. To see this, subtract the right side from the left to get a fraction whose numerator is $(a v-b u) 2$.

Applying this to the given expression yields that

$$
\begin{aligned}
\frac{(x 2) 2}{y 2+z 2} & +\frac{(y 2) 2}{z 2+x 2}+\frac{(z 2) 2}{x 2+y 2} \\
& \geq \frac{(x 2+y 2+z 2) 2}{2(x 2+y 2+z 2)}=\frac{x 2+y 2+z 2}{2} \\
& \geq \frac{x y+y z+z x}{2}=\frac{1}{2}
\end{aligned}
$$

Equality occurs if and only if $x=y=z=1 / \sqrt{3}$.
Solution 6. [M. Essafty] Squaring both sides of the equation $2 x 2=(x 2+y 2)+(x 2-y 2)$ yields that

$$
\begin{aligned}
4 x 4 & =(x 2+y 2) 2+(x 2-y 2) 2+2(x 2+y 2)(x 2-y 2) \\
& \geq(x 2+y 2) 2+2(x 2+y 2)(x 2-y 2)
\end{aligned}
$$

whence

$$
\frac{4 x 4}{x 2+y 2} \geq 3 x 2-y 2
$$

Taking account of similar inequalities for other pairs of variables, we obtain that

$$
\frac{4 x 4}{x 2+y 2}+\frac{4 y 4}{y 2+z 2}+\frac{4 z 4}{z 2+x 2} \geq 2(x 2+y 2+z 2) \geq 2(x y+y z+z x)=2
$$

from which we conclude that the minimum value is $\frac{1}{2}$. This is attained when $x=y=z=1 / \sqrt{3}$.
Solution 7. [O. Xia] Recall that, for $r>0, r+(1 / r) \geq 2$, so that $r \geq 2-(1 / r)$. It follows that

$$
\begin{aligned}
\frac{x 4}{x 2+y 2} & =\left(\frac{x 2}{2}\right)\left(\frac{2 x 2}{x 2+y 2}\right) \\
& \geq\left(\frac{x 2}{2}\right)\left(2-\frac{x 2+y 2}{2 x 2}\right) \\
& =x 2-\frac{x 2+y 2}{4}
\end{aligned}
$$

with similar equalities for the other two terms in the problem statement. Equality occurs if and only if $x 2=y 2=z 2$.

Adding the three equalities yields that Determine the minimum value of

$$
\frac{x 4}{x 2+y 2}+\frac{y 4}{y 2+z 2}+\frac{z 4}{z 2+x 2} \geq \frac{x 2+y 2+z 2}{2}
$$

As before, we see that the right member assumes its minimum value of $\frac{1}{2}$ when $x=y=z=1 / \sqrt{3}$.
651. Determine polynomials $a(t), b(t), c(t)$ with integer coefficients such that the equation $y 2+2 y=x 3-x 2-x$ is satisfied by $(x, y)=(a(t) / c(t), b(t) / c(t))$.

Solution. The equation can be rewritten $(y+1) 2=(x-1) 2(x+1)$. Let $x+1=t 2$ so that $y+1=(t 2-2) t$. Thus, we obtain the solution

$$
(x, y)=(t 2-1, t 3-2 t-1)
$$

With these polynomials, both sides of the equation are equal to $t 6-4 t 4+4 t 2-1$.
652. (a) Let m be any positive integer greater than 2 , such that $x 2 \equiv 1(\bmod m)$ whenever the greatest common divisor of x and m is equal to 1 . An example is $m=12$. Suppose that n is a positive integer for which $n+1$ is a multiple of m. Prove that the sum of all of the divisors of n is divisible by m.
(b) Does the result in (a) hold when $m=2$?
(c) Find all possible values of m that satisfy the condition in (a).
(a) Solution 1. Let $n+1$ be a multiple of m. Then $\operatorname{gcd}(m, n)=1$. We observe that n cannot be a square. Suppose, if possible, that $n=r 2$. Then $\operatorname{gcd}(r, m)=1$. Hence $r 2 \equiv 1(\bmod m)$. But $r 2+1 \equiv 0$ $(\bmod m)$ by hypothesis, so that 2 is a multiple of m, a contradiction.

As a result, if d is a divisor of n, then n / d is a distinct divisor of n. Suppose $d \mid n$ (read " d divides n "). Since m divides $n+1$, therefore $\operatorname{gcd}(m, n)=\operatorname{gcd}(d, m)=1$, so that $d 2=1+b m$ for some integer b. Also $n+1=c m$ for some integer c. Hence

$$
d+\frac{n}{d}=\frac{d 2+n}{d}=\frac{1+b m+c m-1}{d}=\frac{(b+c) m}{d}
$$

Since $\operatorname{gcd}(d, m)=1$ and $d+n / d$ is an integer, d divides $b+c$ and so $d+n / d \equiv 0(\bmod m)$.
Hence

$$
\sum_{d \mid n} d=\sum\{(d+n / d): d \mid n, d<\sqrt{n}\} \equiv 0 \quad(\bmod m)
$$

as desired.
Solution 2. Suppose that $m>1$ and m divides $n+1$. Then $\operatorname{gcd}(m, n)=1$. Suppose, if possible, that $n=r 2$ for some r. Then, since $\operatorname{gcd}(m, r)=1, r 2 \equiv 1(\bmod r)$. Therefore m divides both $r 2+1$ and $r 2-1$, so that $m=2$. But this gives a contradiction. Hence n is not a perfect square.

Suppose that d is a divisor of n. Then the greatest common divisor of m and d is 1 , so that $d 2 \equiv 1$ $(\bmod n)$. Suppose that $d e=n$. Then $e \neq 1 d$ and the greatest common divisor of m and e is 1 . Therefore, there are numbers u and v for which both $d u$ and $e v$ are congruent to 1 modulo m. Since $n \equiv-1$ and $d 2 \equiv 1$ $(\bmod m)$, it follows that

$$
d+e \equiv d+u n \equiv u(d 2+n) \equiv u(1-1)=0
$$

$\bmod m)$, from which it can be deduced that m divides the sum of all the divisors of n.

Solution 3. Suppose that $n+1 \equiv 0(\bmod m)$. As in the first solution, it can be established that n is not a perfect square. Let x be any positive divisor of n and suppose that $x y=n ; x$ and y are distinct. Since $\operatorname{gcd}(x, m)=1, x 2 \equiv 1(\bmod m)$, so that

$$
y=x 2 y \equiv x n \equiv-x \quad(\bmod m)
$$

whence $x+y$ is a multiple of m. Thus, the divisors of n comes in pairs, each of which has sum divisible by m, and the result follows.

Solution 4. [M. Boase] As in the second solution, if $x y=n$, then $x 2 \equiv y 2 \equiv 1(\bmod m)$ so that

$$
0 \equiv x 2-y 2 \equiv(x-y)(x+y) \quad(\bmod m)
$$

For any divisor r of m, we have that

$$
x(x-y) \equiv x 2-x y \equiv 2 \quad(\bmod r)
$$

from which it follows that the greatest common divisor of m and $x-y$ is 1 . Therefore, m must divide $x+y$ and the solution can be completed as before.
(b) Solution. When $m=2$, the result does not hold. The hypothesis is true. However, the conclusion fails when $n=9$ since $9+1$ is a multiple of 2 , but $1+3+9=13$ is odd.
(c) Solution 1. By inspection, we find that $m=1,2,3,4,6,8,12,24$ all satisfy the condition in (a).

Suppose that m is odd. Then $\operatorname{gcd}(2, m)=1 \Rightarrow 22=4 \equiv 1(\bmod m) \Rightarrow m=1,3$.
Suppose that m is not divisible by 3 . Then $\operatorname{gcd}(3, m)=1 \Rightarrow 9=32 \equiv 1(\bmod m) \Rightarrow m=1,2,4,8$. Hence any further values of m not listed in the above must be even multiples of 3 , that is, multiples of 6 .

Suppose that $m \geq 30$. Then, since $25=52 \neq 1(\bmod m), m$ must be a multiple of 5 .
It remains to show that in fact m cannot be a multiple of 5 . We observe that there are infinitely many primes congruent to 2 or 3 modulo 5 . [To see this, let q_{1}, \cdots, q_{s} be the s smallest odd primes of this form and let $Q=5 q_{1} \cdots q_{s}+2$. Then Q is odd. Also, Q cannot be a product only of primes congruent to ± 1 modulo 5 , for then Q itself would be congruent to ± 1. Hence Q has an odd prime factor congruent to ± 2 modulo 5 , which must be distinct from q_{1}, \cdots, q_{s}. Hence, no matter how many primes we have of the desired form, we can always find one more.] If possible, let m be a multiple of 5 with the stated property and let q be a prime exceeding m congruent to ± 2 modulo 5 . Then $\operatorname{gcd}(q, m)=1 \Rightarrow q 2 \equiv 1(\bmod m) \Rightarrow q 2 \equiv 1(\bmod 5)$ $\Rightarrow q \not \equiv \pm 2(\bmod 5)$, yielding a contradiction. Thus, we have given a complete collection of suitable numbers m.

Solution 2. [J. Rickards] Suppose that a suitable value of m is equal to a power of 2 , Then $32 \equiv 1$ (mod m) implies that m must be equal to 4 or 8 . It can be checked that both these values work.

Suppose that $m=p^{a} q$, where p is an odd prime and p and q are coprime. By the Chinese Remainder Theorem, there is a value of x for which $x \equiv 1(\bmod q)$ and $x \equiv 2\left(\bmod p^{a}\right)$. Then $x 2 \equiv 1(\bmod m)$, so that $4 \equiv x 2 \equiv 1\left(\bmod p^{a}\right)$ and thus p must equal 3 . Therefore, m must be divisible by only the primes 2 and 3. Therefore $25=52 \equiv 1(\bmod m)$, with the result that m must divide 24 . Checking reveals that the only possibilities are $m=3,4,6,8,12,24$.

Solution 3. [D. Arthur] Suppose that $m=a b$ satisfies the condition of part (a), where the greatest common divisor of a and b is 1 . Let $\operatorname{gcd}(x, a)=1$. Since a and b are coprime, there exists a number t such that $a t \equiv 1-x(\bmod b)$, so that $z=x+a t$ and b are coprime. Hence, the greatest common divisor of z and $a b$ equals 1 , so that $z 2 \equiv 1(\bmod a b)$, whence $x 2 \equiv z 2 \equiv 1(\bmod a)$. Thus $a($ and also $b)$ satisfies the condition of part (a).

When m is odd and exceeds 3 , then $\operatorname{gcd}(2, m)=1$, but $22=4 \not \equiv 1(\bmod m)$, so m does not satisfy the condition. When $m=2^{k}$ for $k \geq 4$, then $\operatorname{gcd}(3, m)=1$, but $32=9 \not \equiv 1(\bmod m)$. It follows from the first
paragraph that if m satisfies the condition, it cannot be divisible by a power of 2 exceeding 8 nor by an odd number exceeding 3 . This leaves the possibilities $1,2,3,4,6,8,12,24$, all of which satisfy the condition.
653. Let $f(1)=1$ and $f(2)=3$. Suppose that, for $n \geq 3, f(n)=\max \{f(r)+f(n-r): 1 \leq r \leq n-1\}$. Determine necessary and sufficient conditions on the pair (a, b) that $f(a+b)=f(a)+f(b)$.

Solution 1. From the first few values of $f(n)$, we conjecture that $f(2 k)=3 k$ and $f(2 k+1)=3 k+1$ for each positive integer k. We establish this by induction. It is easily checked for $k=1$. Suppose that it holds up to $k=m$.

Suppose that $2 m+2$ is the sum of two positive even numbers $2 x$ and $2 y$. Then $f(2 x)+f(2 y)=3(x+y)=$ $3(m+1)$. If $2 m+2$ is the sum of two positive odd numbers $2 u+1$ and $2 v+1$, then

$$
f(2 u+1)+f(2 v+1)=(3 u+1)+(3 v+1)=3(u+v)+2<3(u+v+1)=3(m+1)
$$

Hence $f(2(m+1))=3(m+1)$.
Suppose $2 m+3$ is the sum of $2 z$ and $2 w+1$. Then $z+w=m+1$ and

$$
f(2 z)+f(2 w+1)=3 z+3 w+1=3(z+w)+1=3(m+1)+1
$$

Hence $f(2(m+1)+1)=3(m+1)+1$. The conjecture is established by induction.
By checking cases on the parity of a and b, one verifies that $f(a+b)=f(a)+f(b)$ if and only if at least one of a and b is even. (If a and b are both odd, the left side is divisible by 3 while the right side is not.)

Solution 2. [K. Yeats] By inspection, we conjecture that $f(n+1)=f(n)+2$ when n is odd, and $f(n+1)=f(n)+1$ when n is even. This is true for $n=1,2$. Suppose it holds up to $n=2 k$. If $2 k+1=i+j$ with i even and j odd, then $f(i-1)+f(j+1)=f(i)-2+f(j)+2=f(i)+f(j)$ and $f(i+1)+f(j-1)=$ $f(i)+1+f(j)-1=f(i)+f(j)$ (where defined), so in particular $f(2 k+1)=f(2 k)+f(1)=f(2 k)+1$. Note that this also tells us that $f(2 k+1)=f(i)+f(j)$ whenever $i+j=2 k+1$. Now consider $2 k+2=i+j$. If i and j are both even, then

$$
f(i+1)+f(j-1)=f(i)+1-f(j)-2=f(i)+f(j)-1
$$

while if i and j are both odd, then

$$
f(i+1)+f(j-1)=f(i)+2-f(j)-1=f(i)+f(j)+1
$$

Thus, $f(2 k+2)=f(i)+f(j)$ if and only if i and j are both even. In particular, $f(2 k+2)=f(2 k)+f(2)=$ $f(2 k+1)-1+3=f(2 k)+2$. We thus find that $f(a+b)=f(a)+f(b)$ if and only if at least one of a and b is even.

