
Solutions for November

647. Find all continuous functions f : R → R such that

f(x + f(y)) = f(x) + y

for every x, y ∈ R.

Solution 1. Setting (x, y) = (t, 0) yields f(t + f(0)) = f(t) for all real t. Setting (x, y) = (0, t) yields
f(f(t)) = f(0) + t for all real t. Hence f(f(f(t))) = f(t) for all real t, i.e., f(f(z)) = z for each z in the
image of f . Let (x, y) = (f(t),−f(0)). Then

f(f(t) + f(−f(0))) = f(f(t))− f(0) = f(0) + t− f(0) = t

so that the image of f contains every real and so f(f(t)) ≡ t for all real t.

Taking (x, y) = (u, f(v)) yields
f(u + v) = f(u) + f(v)

since v = f(f(v)) for all real u and v. In particular, f(0) = 2f(0), so f(0) = 0 and 0 = f(−t + t) = f(−t) +
f(t). By induction, it can be shown that for each integer n and each real t, f(nt) = nf(t). In particular, for
each rational r/s, f(r/s) = rf(1/s) = (r/s)f(1). Since f is continuous, f(t) = f(t · 1) = tf(1) for all real t.
Let c = f(1). Then 1 = f(f(1)) = f(c) = cf(1) = c2 so that c = ±1. Hence f(t) ≡ t or f(t) ≡ −t. Checking
reveals that both these solutions work. (For f(t) ≡ −t, f(x + f(y)) = −x− f(y) = f(x) + y, as required.)

Solution 2. Taking (x, y) = (0, 0) yields f(f(0)) = f(0), whence f(f(f(0))) = f(f(0)) = f(0). Taking
(x, y) = (0, f(0)) yields f(f(f(0))) = 2f(0). Hence 2f(0) = f(0) so that f(0) = 0. Taking x = 0 yields
f(f(y)) = y for each y. We can complete the solution as in the Second Solution.

Solution 3. [J. Rickards] Let (x, y) = (x,−f(x)) to get

f(x + f(−f(x)) = f(x)− f(x) = 0

for all x. Thus, there is at least one element u for which f(u) = 0. But then, taking (x, y) = (0, u), we find
that f(0) = f(0 + f(u)) = f(0) + u, so that u = 0.

Therefore f(f(y)) = y for each y, so that f is a one-one onto function. Also, x + f(−f(x)) = 0, so that
−f(x) = f(f(−f(x)) = f(−x) for each value of x.

Since f(x) is continuous and vanishes only for x = 0, we have either (1) f(x) is positive for x > 0 and
negative for x < 0, or (2) f(x) is negative for x > 0 and positive for x < 0. Suppose that situation (1)
obtains. Then, for every real number x, f(x − f(x)) = f(x + f(−x)) = f(x) − x = −(x − f(x)). Since
f(x − f(x)) and x − f(x) have the same sign, we must have f(x) = x. Suppose that situation (2) obtains.
Then, for every real x, f(x + f(x)) = f(x) + x, from which we deduce that f(x) = −x. Therefore, there are
two functions f(x) = x and f(x) = −x that satisfy the equation and both work.

648. Prove that for every positive integer n, the integer 1 + 5n + 52n + 53n + 54n is composite.

Solution. Observe the following representations:

x8 + x6 + x4 + x2 + 1 = (x4 + x3 + x2 + x + 1)(x4− x3 + x2− x + 1) . (1)

and
x4 + x3 + x2 + x + 1 = (x2 + 3x + 1)2− 5x(x + 1)2 . (2)

When n = 2k is even, we can substitute x = 5k into equation (1) to get a factorization. When n = 2k− 1 is
odd, we can substitute x = 52k−1 into equation (2) to get a difference of squares, which can then be factored.
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649. In the triangle ABC, 6 BAC = 20◦ and 6 ACB = 30◦. The point M is located in the interior of triangle
ABC so that 6 MAC = 6 MCA = 10◦. Determine 6 BMC.

Solution 1. [S. Sun] Construct equilateral triangle MDC with M and D on opposite sides of AC and
equilateral triangle AME with M and Z on opposite sides of AB. Since AM = MC, these equilateral
triangles are congruent. Since AM = MD and

6 AMD = 6 AMC − 6 DMC = 160◦ − 60◦ = 100◦ ,

6 MAD = 6 MDA = 40◦. Since ME = AM = MC, triangle EMC is isosceles. Since

6 EMC = 360◦ − 6 EMA− 6 AMC = 360◦ − 60◦ − 160◦ = 140◦ ,

6 EMC = 6 MCE = 20◦. As 6 MCB = 20◦ = 6 MCE, E,B,C are collinear. Now

6 EBA = 6 BAC + 6 BCA = 20◦ + 30◦ = 50◦

= 60◦ − 10◦ = 6 EAM − 6 BAM = 6 EAB ,

so that BE = AE = ME and triangle BEM is isosceles. Since 6 BEM = 6 BEA− 6 MEA = 80◦−60◦ = 20◦,
it follows that

6 BMC = 360◦ − 6 EMB − 6 EMA− 6 AMC = 360◦ − 80◦ − 60◦ − 160◦ = 60◦ .

Solution 2. Let O be the circumcentre of the triangle BAC; this lies on the opposite side of AC to B.
Since the angle subtended at the centre by a chord is double that subtended at the circumference, we have
that

6 AOC = 2(180◦ − 6 ABC) = 2(180◦ − 130◦) = 100◦ .

The right bisector of the segment AC passes through the apex of the isosceles triangle MAC and the centre
O of the circumcircle of triangle BAC. We have that 6 AOM = 50◦, 6 AMO = 1

2
6 AMC = 80◦, and

6 MAO = 180◦ − 50◦ − 80◦ = 50◦ .

Therefore, triangle MAO is isosceles with MA = MO.

Observe that 6 BAO = 6 BAC + 6 MAO − 6 MAC = 60◦ and that AO = BO, so that triangle BAO is
equilateral and so BA = BO. Since B and M are both equidistant from A and O, the line BM must right
bisect the segment AO at N , say. Therefore, 6 MNO = 90◦, so that 6 NMO = 40◦. It follows that

6 BMC = 180◦ − 6 CMO − 6 NMO = 180◦ − 80◦ − 40◦ = 60◦ .

Solution 3. [M. Essafty] Let α = 6 MBA, so that 6 MBC = 130◦ − α. From the trigonometric version
of Ceva’s Theorem, we have that

sinα sin 20◦ sin 10◦ = sin(130◦ − α) sin 10◦ sin 10◦

⇒ 2 sin alpha sin 10◦ cos 10◦ = sin(130◦ − α) sin 10◦

⇒ 2 sinα cos 10◦ = cos(40◦ − α) = cos 40◦ cos α + sin 40◦ sinα .

Dividing both sides by cos 40◦ cos α yields that

2 cos α

(
2 cos 10◦

cos 40◦
− sin 40◦

cos 40◦

)
= 1 .
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Therefore
cot α =

cos 10◦ + cos 10◦ − cos 50◦

cos 40◦

=
cos 10◦ + 2 sin 30◦ sin 20◦

cos 40◦

=
cos 10◦ + sin 20◦

cos 40◦
=

cos 10◦ + cos 70◦

cos 40◦

=
2 cos 40◦ cos 30◦

cos 40◦
= 2 cos 30◦ =

√
3 .

Therefore α = 30◦.

650. Suppose that the nonzero real numbers satisfy

1
x

+
1
y

+
1
z

=
1

xyz
.

Determine the minimum value of

x4
x2 + y2

+
y4

y2 + z2
+

z4
z2 + x2

.

Solution 1. [W. Fu] Let f(x, y, z) denote the expression

x4
x2 + y2

+
y4

y2 + z2
+

z4
z2 + x2

.

Then

f(x, y, z)− f(x, z, y) =
(

x4
x2 + y2

+
y4

y2 + z2
+

z4
z2 + x2

)
−

(
x4

x2 + z2
+

z4
z2 + y2

+
y4

y2 + x2

)
=

x4− y4
x2 + y2

+
y4− z4
y2 + z2

+
z4− x4
z2 + x2

= (x2− y2) + (y2− z2) + (z2− x2) = 0 .

Thus, f(x, y, z) = f(x, z, y) and

f(x, y, z) =
1
2
(f(x, y, z) + f(x, z, y))

=
1
2

[
x4 + y4
x2 + y2

+
y4 + z4
y2 + z2

+
z4 + x4
z2 + x2

]
=

1
2

[(
x2 + y2− 2x2y2

x2 + y2

)
+

(
y2 + z2− 2y2z2

y2 + z2

)
+

(
z2 + x2− 2z2x2

z2 + x2

)]
= (x2 + y2 + z2)− 1

2

(
2x2y2

x2 + y2
+

2y2z2
y2 + z2

+
2z2x2

z2 + x2

)
Observe that

x2 + y2 + z2 =
1
2
[(x2 + y2) + (y2 + z2) + (z2 + x2)] ≥ xy + yz + zx = 1

and that 2x2y2 ≤ x4 + y4. Hence

f(x, y, z) ≥ 1− 1
2

(
x4 + y4
x2 + y2

+
y4 + z4
y2 + z2

+
x4 + x4
z2 + x2

)
= 1− 1

2
[f(x, y, z) + f(x, z, y)] = 1− f(x, y, z) ,
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from which f(x, y, z) ≥ 1
2 . Equality occurs if and only if x = y = z = 1/

√
3.

Solution 2. [S. Sun] From the Arithmetic-Geometric Means Inequality, we have that

x4
x2 + y2

+
1
4
(x2 + y2) ≥ x2

with a similar inequality for the other pairs of variables. Adding the three inequalities obtained, we find that

x4
x2 + y2

+
y4

y2 + z2
+

z4
z2 + x2

+
1
2
(x2 + y2 + z2) ≥ x2 + y2 + z2

from which
x4

x2 + y2
+

y4
y2 + z2

+
z4

z2 + x2
≥ 1

2
(x2 + y2 + z2) ,

with equality if and only if x = y = z. Since (x− y)2+ (y− z)2+ (z−x)2 ≥ 0, it follows that x2+ y2+ z2 ≥
xy + yz + zx = 1. Therefore

x4
x2 + y2

+
y4

y2 + z2
+

z4
z2 + x2

≥ 1
2

with equality if and only if x = y = z = 1/
√

3.

Solution 3. [K. Zhou; G. Ajjanagadde; M. Essafty] Since (x− y)2 ≥ 0, etc., we have that x2+ y2+ z2 ≥
xy + yz + zx. By the Cauchy-Schwarz Inequality, we have that[(

x2√
x2 + y2

)
2 +

(
y2√

y2 + z2

)
2 +

(
z2√

z2 + x2

)
2
]
[(

√
x2 + y2)2 + (

√
y2 + z2)2 + (

√
z2 + x2)2]

≥ (x2 + y2 + z2)2 ,

whence (
x4

x2 + y2
+

y4
y2 + z2

+
z4

z2 + x2

)
[(x2 + y2) + (y2 + z2) + (z2 + x2)] ≥ (x2 + y2 + z2)2 ,

so that
x4

x2 + y2
+

y4
y2 + z2

+
z4

z2 + x2
≥ x2 + y2 + z2

2
≥ xy + yz + zx

2
=

1
2

.

Equality occurs when x = y = z = 1/
√

3.

Solution 4. Observe that the given condition is equivalent to xy + yz + zx = 1. Since the expression
to be minimized is the same when (x, y, z) is replaced by (−x,−y,−z) and since two of the variables must
have the same sign, we may assume that x and y are both positive.

Suppose, first, that z > 0. Since x2 + y2 ≥ 2xy, we have that

x4
x2 + y2

= x2− x2y2
x2 + y2

≥ x2− xy

2
,

with similar inequalities for the other pairs of variables. Therefore, the expression to be minimized is not
less that

(x2 + y2 + z2)− 1
2
(xy + yz + zx) ≥ (xy + yz + zx)− 1

2
(xy + yz + zx) =

1
2

.

Equality occurs if and only if x = y = z = 1/
√

3.

Regardless of the signs of the variables, if the largest of x2, y2, z2 is at least 2, we show that the
expression is not less that 1. For example, if x2 ≥ 2, x2 ≥ y2, we find that

x4
x2 + y2

≥ x4
2x2

=
x2
2
≥ 1 .
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Henceforth, assume that x2, y2, z2 are less than 2 and that z < 0. Then xy < 2. Since 0 > z =
(1− xy)/(x + y), then xy > 1, so that x + y ≥ 2

√
xy > 2. Hence

|z| = xy − 1
x + y

≤ 1
2

.

If x > y, then (because xy > 1), x > 1, so that

x4
x2 + y2

>
x4
2x2

>
1
2

.

If y > z, then y > 1 > |z| and
y4

y2 + z2
>

y4
2y2

>
1
2

.

In any case, when z < 0, the quantity to be minimized exceeds 1/2. Therefore, the minimum value is 1/2,
achieved when (x, y, z) = (3−1/2, 3−1/2, 3−1/2).

Solution 5. [B. Wu] We first establish a lemms: if a, b, u, v are positive, then

a2
u

+
b2
v
≥ (a + b)2

u + v

with equality if and only if a : u = b : v. To see this, subtract the right side from the left to get a fraction
whose numerator is (av − bu)2.

Applying this to the given expression yields that

(x2)2
y2 + z2

+
(y2)2

z2 + x2
+

(z2)2
x2 + y2

≥ (x2 + y2 + z2)2
2(x2 + y2 + z2)

=
x2 + y2 + z2

2

≥ xy + yz + zx

2
=

1
2

.

Equality occurs if and only if x = y = z = 1/
√

3.

Solution 6. [M. Essafty] Squaring both sides of the equation 2x2 = (x2 + y2) + (x2− y2) yields that

4x4 = (x2 + y2)2 + (x2− y2)2 + 2(x2 + y2)(x2− y2)
≥ (x2 + y2)2 + 2(x2 + y2)(x2− y2)

whence
4x4

x2 + y2
≥ 3x2− y2 .

Taking account of similar inequalities for other pairs of variables, we obtain that

4x4
x2 + y2

+
4y4

y2 + z2
+

4z4
z2 + x2

≥ 2(x2 + y2 + z2) ≥ 2(xy + yz + zx) = 2 ,

from which we conclude that the minimum value is 1
2 . This is attained when x = y = z = 1/

√
3.

Solution 7. [O. Xia] Recall that, for r > 0, r + (1/r) ≥ 2, so that r ≥ 2− (1/r). It follows that

x4
x2 + y2

=
(

x2
2

)(
2x2

x2 + y2

)
≥

(
x2
2

)(
2− x2 + y2

2x2

)
= x2− x2 + y2

4
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with similar equalities for the other two terms in the problem statement. Equality occurs if and only if
x2 = y2 = z2.

Adding the three equalities yields that Determine the minimum value of

x4
x2 + y2

+
y4

y2 + z2
+

z4
z2 + x2

≥ x2 + y2 + z2
2

.

As before, we see that the right member assumes its minimum value of 1
2 when x = y = z = 1/

√
3.

651. Determine polynomials a(t), b(t), c(t) with integer coefficients such that the equation y2+2y = x3−x2−x
is satisfied by (x, y) = (a(t)/c(t), b(t)/c(t)).

Solution. The equation can be rewritten (y+1)2 = (x−1)2(x+1). Let x+1 = t2 so that y+1 = (t2−2)t.
Thus, we obtain the solution

(x, y) = (t2− 1, t3− 2t− 1) .

With these polynomials, both sides of the equation are equal to t6− 4t4 + 4t2− 1.

652. (a) Let m be any positive integer greater than 2, such that x2 ≡ 1 (mod m) whenever the greatest
common divisor of x and m is equal to 1. An example is m = 12. Suppose that n is a positive integer
for which n + 1 is a multiple of m. Prove that the sum of all of the divisors of n is divisible by m.

(b) Does the result in (a) hold when m = 2?

(c) Find all possible values of m that satisfy the condition in (a).

(a) Solution 1. Let n + 1 be a multiple of m. Then gcd(m,n) = 1. We observe that n cannot be a
square. Suppose, if possible, that n = r2. Then gcd(r, m) = 1. Hence r2 ≡ 1 (mod m). But r2 + 1 ≡ 0
(mod m) by hypothesis, so that 2 is a multiple of m, a contradiction.

As a result, if d is a divisor of n, then n/d is a distinct divisor of n. Suppose d|n (read “d divides n”).
Since m divides n + 1, therefore gcd(m,n) = gcd(d, m) = 1, so that d2 = 1 + bm for some integer b. Also
n + 1 = cm for some integer c. Hence

d +
n

d
=

d2 + n

d
=

1 + bm + cm− 1
d

=
(b + c)m

d
.

Since gcd(d, m) = 1 and d + n/d is an integer, d divides b + c and so d + n/d ≡ 0 (mod m).

Hence ∑
d|n

d =
∑

{(d + n/d) : d|n, d <
√

n} ≡ 0 (mod m)

as desired.

Solution 2. Suppose that m > 1 and m divides n + 1. Then gcd (m,n) = 1. Suppose, if possible, that
n = r2 for some r. Then, since gcd (m, r) = 1, r2 ≡ 1 (mod r). Therefore m divides both r2 + 1 and r2− 1,
so that m = 2. But this gives a contradiction. Hence n is not a perfect square.

Suppose that d is a divisor of n. Then the greatest common divisor of m and d is 1, so that d2 ≡ 1
(mod n). Suppose that de = n. Then e 6= 1d and the greatest common divisor of m and e is 1. Therefore,
there are numbers u and v for which both du and ev are congruent to 1 modulo m. Since n ≡ −1 and d2 ≡ 1
(mod m), it follows that

d + e ≡ d + un ≡ u(d2 + n) ≡ u(1− 1) = 0

mod m), from which it can be deduced that m divides the sum of all the divisors of n.
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Solution 3. Suppose that n+1 ≡ 0 (mod m). As in the first solution, it can be established that n is not
a perfect square. Let x be any positive divisor of n and suppose that xy = n; x and y are distinct. Since
gcd (x,m) = 1, x2 ≡ 1 (mod m), so that

y = x2y ≡ xn ≡ −x (mod m)

whence x + y is a multiple of m. Thus, the divisors of n comes in pairs, each of which has sum divisible by
m, and the result follows.

Solution 4. [M. Boase] As in the second solution, if xy = n, then x2 ≡ y2 ≡ 1 (mod m) so that

0 ≡ x2− y2 ≡ (x− y)(x + y) (mod m).

For any divisor r of m, we have that

x(x− y) ≡ x2− xy ≡ 2 (mod r)

from which it follows that the greatest common divisor of m and x− y is 1. Therefore, m must divide x + y
and the solution can be completed as before.

(b) Solution. When m = 2, the result does not hold. The hypothesis is true. However, the conclusion
fails when n = 9 since 9 + 1 is a multiple of 2, but 1 + 3 + 9 = 13 is odd.

(c) Solution 1. By inspection, we find that m = 1, 2, 3, 4, 6, 8, 12, 24 all satisfy the condition in (a).

Suppose that m is odd. Then gcd(2,m) = 1 ⇒ 22 = 4 ≡ 1 (mod m) ⇒ m = 1, 3.

Suppose that m is not divisible by 3. Then gcd(3,m) = 1 ⇒ 9 = 32 ≡ 1 (mod m) ⇒ m = 1, 2, 4, 8.
Hence any further values of m not listed in the above must be even multiples of 3, that is, multiples of 6.

Suppose that m ≥ 30. Then, since 25 = 52 6= 1 (mod m), m must be a multiple of 5.

It remains to show that in fact m cannot be a multiple of 5. We observe that there are infinitely many
primes congruent to 2 or 3 modulo 5. [To see this, let q1, · · · , qs be the s smallest odd primes of this form and
let Q = 5q1 · · · qs + 2. Then Q is odd. Also, Q cannot be a product only of primes congruent to ±1 modulo
5, for then Q itself would be congruent to ±1. Hence Q has an odd prime factor congruent to ±2 modulo
5, which must be distinct from q1, · · ·, qs. Hence, no matter how many primes we have of the desired form,
we can always find one more.] If possible, let m be a multiple of 5 with the stated property and let q be a
prime exceeding m congruent to ±2 modulo 5. Then gcd(q, m) = 1 ⇒ q2 ≡ 1 (mod m) ⇒ q2 ≡ 1 (mod 5)
⇒ q 6≡ ±2 (mod 5), yielding a contradiction. Thus, we have given a complete collection of suitable numbers
m.

Solution 2. [J. Rickards] Suppose that a suitable value of m is equal to a power of 2, Then 32 ≡ 1 (mod
m) implies that m must be equal to 4 or 8. It can be checked that both these values work.

Suppose that m = paq, where p is an odd prime and p and q are coprime. By the Chinese Remainder
Theorem, there is a value of x for which x ≡ 1 (mod q) and x ≡ 2 (mod pa). Then x2 ≡ 1 (mod m), so that
4 ≡ x2 ≡ 1 (mod pa) and thus p must equal 3. Therefore, m must be divisible by only the primes 2 and
3. Therefore 25 = 52 ≡ 1 (mod m), with the result that m must divide 24. Checking reveals that the only
possibilities are m = 3, 4, 6, 8, 12, 24.

Solution 3. [D. Arthur] Suppose that m = ab satisfies the condition of part (a), where the greatest
common divisor of a and b is 1. Let gcd (x, a) = 1. Since a and b are coprime, there exists a number t such
that at ≡ 1 − x (mod b), so that z = x + at and b are coprime. Hence, the greatest common divisor of z
and ab equals 1, so that z2 ≡ 1 (mod ab), whence x2 ≡ z2 ≡ 1 (mod a). Thus a (and also b) satisfies the
condition of part (a).

When m is odd and exceeds 3, then gcd (2,m) = 1, but 22 = 4 6≡ 1 (mod m), so m does not satisfy the
condition. When m = 2k for k ≥ 4, then gcd (3,m) = 1, but 32 = 9 6≡ 1 (mod m). It follows from the first
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paragraph that if m satisfies the condition, it cannot be divisible by a power of 2 exceeding 8 nor by an odd
number exceeding 3. This leaves the possibilities 1, 2, 3, 4, 6, 8, 12, 24, all of which satisfy the condition.

653. Let f(1) = 1 and f(2) = 3. Suppose that, for n ≥ 3, f(n) = max{f(r) + f(n − r) : 1 ≤ r ≤ n − 1}.
Determine necessary and sufficient conditions on the pair (a, b) that f(a + b) = f(a) + f(b).

Solution 1. From the first few values of f(n), we conjecture that f(2k) = 3k and f(2k + 1) = 3k + 1 for
each positive integer k. We establish this by induction. It is easily checked for k = 1. Suppose that it holds
up to k = m.

Suppose that 2m+2 is the sum of two positive even numbers 2x and 2y. Then f(2x)+f(2y) = 3(x+y) =
3(m + 1). If 2m + 2 is the sum of two positive odd numbers 2u + 1 and 2v + 1, then

f(2u + 1) + f(2v + 1) = (3u + 1) + (3v + 1) = 3(u + v) + 2 < 3(u + v + 1) = 3(m + 1) .

Hence f(2(m + 1)) = 3(m + 1).

Suppose 2m + 3 is the sum of 2z and 2w + 1. Then z + w = m + 1 and

f(2z) + f(2w + 1) = 3z + 3w + 1 = 3(z + w) + 1 = 3(m + 1) + 1 .

Hence f(2(m + 1) + 1) = 3(m + 1) + 1. The conjecture is established by induction.

By checking cases on the parity of a and b, one verifies that f(a+ b) = f(a)+ f(b) if and only if at least
one of a and b is even. (If a and b are both odd, the left side is divisible by 3 while the right side is not.)

Solution 2. [K. Yeats] By inspection, we conjecture that f(n + 1) = f(n) + 2 when n is odd, and
f(n+1) = f(n)+1 when n is even. This is true for n = 1, 2. Suppose it holds up to n = 2k. If 2k+1 = i+ j
with i even and j odd, then f(i− 1) + f(j + 1) = f(i)− 2 + f(j) + 2 = f(i) + f(j) and f(i + 1) + f(j − 1) =
f(i)+1+f(j)−1 = f(i)+f(j) (where defined), so in particular f(2k +1) = f(2k)+f(1) = f(2k)+1. Note
that this also tells us that f(2k + 1) = f(i) + f(j) whenever i + j = 2k + 1. Now consider 2k + 2 = i + j. If
i and j are both even, then

f(i + 1) + f(j − 1) = f(i) + 1− f(j)− 2 = f(i) + f(j)− 1

while if i and j are both odd, then

f(i + 1) + f(j − 1) = f(i) + 2− f(j)− 1 = f(i) + f(j) + 1 .

Thus, f(2k + 2) = f(i) + f(j) if and only if i and j are both even. In particular, f(2k + 2) = f(2k) + f(2) =
f(2k + 1)− 1 + 3 = f(2k) + 2. We thus find that f(a + b) = f(a) + f(b) if and only if at least one of a and
b is even.
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