
Solutions for May

619. Suppose that n > 1 and that S is the set of all polynomials of the form

zn + an−1z
n−1 + an−2z

n−2 + · · ·+ a1z + a0 ,

whose coefficients are complex numbers. Determine the minimum value over all such polynomials of the
maximum value of |p(z)| when |z| = 1.

Solution. [J. Schneider] For each value of n, the minimum is equal to 1. This minimum is attained for
the polynomial zn whose absolute value is equal to 1 when |z| = 1.

Let q(z) = a0z
n + a1z

n−1 + · · · + an−1z + 1, so that p(z) = znq(1/z). Hence |p(z)| = |q(1/z)|, when
|z| = 1. Thus, the existence of z with |z| = 1 for which |p(z)| ≥ 1 is equivalent to the existence of z with
|z| = 1 for which |q(z)| ≥ 1.

Let ζ be a primitive (n + 1)th root of unity (i.e., ζ = cos(2π/(n + 1)) + i sin(2π/(n + 1)), say). Then
the set of (n + 1) roots of unity consists of 1 and ζk = ζk (for 1 ≤ k ≤ n). Observe that for 1 ≤ i ≤ n,

1 + ζi
1 + ζi

2 + · · ·+ ζi
n = 1 + (ζi)1 + (ζi)2 + · · ·+ (ζi)n =

(ζi)n+1 − 1
ζi − 1

= 0 .

Therefore

q(1) + q(ζ1) + q(ζ2) + · · ·+ q(ζn) = a0(1 + ζn
1 + · · ·+ ζn

n ) + · · ·+ an−1(1 + ζ1 + · · ·+ ζn) + (n + 1) = n + 1 .

However, then
n + 1 = |q(1) + q(ζ1) + · · ·+ q(ζn)| ≤ |q(1)|+ |q(ζ1)|+ · · ·+ |q(ζn)| ,

so that at least one of the values in the right member is not less than 1. The desired result follows.

620. Let a1, a2, · · · , an be distinct integers. Prove that the polynomial

p(z) = (z − a1)2(z − a2)2 · · · (z − an)2 + 1

cannot be written as the product of two nonconstant polynomials with integer coefficients.

Solution. Suppose, if possible that p(z) = q(z)r(z), where q(z) and r(z) are two polynomials of positive
degree with integer coefficients. Then, for each ai, q(ai) and r(ai) are integers whose product is 1; therefore
they can be only 1 or −1. Since the polynomial p(z) is positive for real z, neither of the polynomials q(z)
nor r(z) can vanish for any real value of z; therefore, the sign of each is constant for real z. By multiplying
both by −1 if necessary, we may assume that both polynomials q and r are always positive for real z. Hence
q(ai) = r(ai) = 1 for 1 ≤ i ≤ n. Thus, each of the polynomial q(z)− 1 and r(z)− 1 has n distinct zeros ai

and so have degree not less than n. Since the degree of p(z) is exactly 2n, the degrees of q(z) and r(z) must
be exactly n. Therefore

q(z) = r(z) = 1 + (z − a1)(z − a2)(z − a3) · · · (z − an) .

Therefore
(z − a1)2(z − a2)2(z − a3)2 · · · (z − an)2 + 1 = q(z)2 ,

whence
1 = [q(z)− (z − a1)(z − a2) · · · (z − an)][q(z) + (z − a1)(z − a2) · · · (z − an)] .

But this is impossible as the second factor on the right has positive degree. The desired result follows.
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621. Determine the locus of one focus of an ellipse reflected in a variable tangent to the ellipse.

Solution. Let the foci of the ellipse be F and G, and let P be an arbitrary point on the ellipse. Suppose
that H is the reflected image of F in the tangent through P . We note that

|HP |+ |GP | = |FP |+ |GP |

is constant. Also, if X is an arbitrary point on the tangent on the same side of P as FH and Y is a point
on the tangent on the opposite side, then 6 HPX = 6 FPX = 6 GPY = 180◦ − 6 GPX, so that G, P, H are
collinear. Therefore H lies on the circle with centre G and radius |GP |+ |FP |.

Conversely, let K be any point on this circle. Since the ellipse is contained in the interior of the circle,
the segment GK intersects the ellipse at a point P . We have that

|PK| = |GK| − |GP | = |FP | .

Let XY be the tangent to the ellipse at P with X on the same side of P as KF and Y on the opposite side.
Then

6 KPX = 6 GPY = 6 FPX ,

from which it follows that K is the reflection of F in the tangent XY .

Comment. To show that the locus is the prescribed circle, you need to show, not only that each point
on the locus lies on the circle, but also that each point on the circle satisfies the locus condition.

622. Let I be the centre of the inscribed circle of a triangle ABC and let u, v, w be the respective lengths of
IA, IB, IC. Let P be any point in the plane and p, q, r the respective lengths of PA, PB, PC. Prove
that, with the sidelengths of the triangle given conventionally as a, b, c,

ap2 + bq2 + cr2 = au2 + bv2 + cw2 + (a + b + c)z2 ,

where z is the length of IP .

Solution 1. [R. Cheng] The equation can be rearranged to read

a(p2 − u2 − z2) + b(q2 − v2 − z2) + c(r2 − w2 − z2) = 0 .

By the Law of Cosines applied to triangle API, we have that

p2 − u2 − z2 = 2uz cos 6 PIA = −→
IA · −→IP .

Similar relations can be obtained for triangles PIB and PIC, and so the equation to be derived is

a
−→
IA · −→IP + b

−→
IB · −→IP + c

−→
IC · −→IP = 0 .

Since this has to be derived for all points P , we need to show that

a
−→
IA + b

−→
IB + c

−→
IC = −→

O .

We show that a
−→
IA + b

−→
IB is collinear with −→

IC. Construct points X and Y on the line CI so that AX
and BY are both perpendicular to CI. Let CI and AB intersect at Z. Then

6 XAI = 90◦ − 6 AIX = 90◦ − (180◦ − 6 IZA− 6 ZAI)

= 6 IZA +
1
2
6 BAC − 90◦

= (180◦ − 6 BAC − 1
2
6 ACB) +

1
2
6 BAC − 90◦

= 90◦ − 1
2
(6 BAC + 6 ACB)

= 90◦ − 1
2
(6 A + 6 C) =

1
2
6 B .
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Hence |AX| = |AI| cos(B/2). Similarly |BY | = |BI| cos(A/2). Then, from the Law of Sines, AI : IB =
sin(B/2) : sin(A/2) and AX : BY = sin(B/2) cos(B/2) : sin(A/2) cos(A/2) = sinB : sinA, from which
a|AX| = b|BY |. Thus, a

−−→
AX + b

−−→
BY has zero component in the direction orthogonal to CI and so a

−→
IA+ b

−→
IB

is collinear with −→
IC. Repeat this for the other two vectors to find that a

−→
IA + b

−→
IB + c

−→
IC = 0 is collinear

with each of its summands, and therefore must be zero.

Solution 2. [N. Lvov] Let p = −→
AP , q = −−→

BP , r = −−→
CP , a = −−→

BC, b = −→
CA, c = −−→

AB and z = −→
IP . Let

u =
bc− cb
a + b + c

.

This is a vector that points into the triangle from vertex A. Suppose that Q is the tip of this vector, so that
u = −→

AQ. The distance of Q from side AC is equal to

2[AQC]
b

=
|u× b|

b
=

|b× c|
a + b + c

=
2[ABC]
a + b + c

,

which is the inradius of triangle ABC. Similarly, the distance of Q from side AB is equal to the inradius.
Therefore, Q must be the incentre of the triangle. A similar analysis can be made for the other two vertices
of the triangle and we find that

u =
bc− cb
a + b + c

= −→
AI ;

v ≡ ca− ac
a + b + c

= −→
BI ;

and
w =

ab− ba
a + b + c

= −→
CI .

Since au + bv + cw = 0,

a(p + u) + b(q + v) + c(r + w) = a(p− u) + b(q− v) + c(r−w) .

Taking the dot product of this equation with the vector z = p− u = q− v = r−w leads to

(ap2 + bq2 + cr2)− (au2 + bv2 + cr2) = (a + b + c)z2 ,

as desired.

623. Given the parameters a, b, c, solve the system

x + y + z = a + b + c;

x2 + y2 + x2 = a2 + b2 + c2;
x

a
+

y

b
+

z

c
= 3 .

Solution. [N. Lvov, J. Schneider] The first and third equations represent two planes in space that
intersect in a line; the second represents a sphere, which the line intersects in at most two points. Therefore
there are at most two solutions to the equation. One is (x, y, z) = (a, b, c). The second is equal to

(x, y, z) = (a[1− k(b− c)], b[1− k(c− a)], c[1− k(a− b)])

where

k =
2[a2(b− c) + b2(c− a) + c2(a− b)]
a2(b− c)2 + b2(c− a)2 + c2(a− b)2

=
(a− b)(b− c)(c− a)

a2b2 + b2c2 + c2a2 − abc(a + b + c)
.
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Comment. This satisfies the linear equations regardless of the value of k, and substitution into the
quadratic equation will establish the appropriate value of k.

624. Suppose that xi ≥ 0 and
n∑

i=1

1
1 + xi

≤ 1 .

Prove that
n∑

i=1

2−xi ≤ 1 .

Solution. [J. Schneider] Let f(x) = x21/x. Since f ′(x) = (1 − (log 2/x))21/x < 0 for 0 < x < log 2, it
follows that f(x) decreases on the interval (0, 1

2 ].

The function 2x−1 is convex, so that the graphs of y = x and y = 2x−1 intersect in at most two points.
Since they intersect at x = 1 and x = 2, it follows that x > 2x−1 when 1 < x < 2 and x < 2x−1 when x > 2.

It suffices to prove the problem under the condition that
∑

(1 + xi)−1 = 1, for if
∑

(1 + xi)−1 < 1, then
we can select X > 0 so that (1 + X)−1 +

∑
(1 + xi)−1 = 1 and obtain 2−X +

∑
2−xi ≤ 1, from which the

desired result would follow.

Let yi = (1 + xi)−1 so that
∑

yi = 1. Suppose, to begin with that yi ≤ 1
2 for each i. Then, since

f(yi) ≥ f( 1
2 ) = 2, it follows that

2−xi = 2(1−(1/yi)) =
2

21/yi
≤ yi

so that
∑n

i=1 2−xi ≤
∑n

i=1 yi = 1 as desired.

The remaining case is that at least one yi exceeds 1
2 . There can be at most one such yi, so we may

suppose that y1, y2, · · · , yn−1 ≤ 1
2 < yn.

Suppose that g(x) = 2(1−(1/x)). We show that

g(y1) + g(y2) + · · ·+ g(yn−1) ≤ g(y1 + y2 + · · ·+ yn−1) .

Suppose that Y = y1 + y2 + · · ·+ yn−1; note that Y < 1
2 . Then

g(y1) + g(y2) + · · ·+ g(yn) = 2
[

y1

f(y1)
+

y2

f(y2)
+ · · ·+ yn−1

f(yn−1)

]
≤ 2

[
y1

f(Y )
+

y2

f(Y )
+ · · ·+ yn−1

f(Y )

]
≤ 2Y

f(Y )
= g(Y ) = g(y1 + y2 + · · ·+ yn−1) .

We need to show that
∑n

i=1 g(yi) ≤ 1 when
∑n

i=1 yi = 1. This can be achieved by showing that
g(Y ) + g(1− Y ) ≤ 1; this amounts to

1

2
1−Y

Y

+
1

2
Y

1−Y

≤ 1,

for 0 < Y < 1. Let z = (1− Y )/Y . Then we need to show that

1
2z

+
1

21/z
≤ 1

for z > 0. Since the left side takes the same value at z and 1/z, it is enough to establish this for z ≥ 1.
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When z ≥ 2, we can use the fact that 2z−1 ≥ 2 and Bernoulli’s inequality to obtain(
1− 1

2z

)z

≥ 1− z

2z
≥ 1− 1

2
=

1
2

,

from which 1− 2−z ≥ 2−1/z as desired.

Suppose that 1 ≤ z ≤ 2. Let h(z) = 2−z + 2−1/z. Then h(1) = 1. We show that h(z) decreases for
z ≥ 1.

h′(z) = − log 2 · 2−z + log 2 · z−22−1/z .

Since 1 ≤ z ≤ 2, we have that z ≥ 2z−1, so that z2 ≥ 22z−2. However

(2z − 2)−
(

z − 1
z

)
=

(
z +

1
z

)
− 2 ≥ 0

so that 2z − 2 ≥ z − (1/z). Therefore z2 ≥ 2z− 1
z and so

h′(z) ≤ − log 2 · 2−z + log 2 · 2−1/z · 2 1
z−z = log 2(−2−z + 2−z) = 0 .

Thus, h(z) decreases on [1, 2] and so h(z) ≤ 1 there. This completes the solution.

625. Given an odd number of intervals, each of unit length, on the real line, let S be the set of numbers that
are in an odd number of these intervals. Show that S is a finite union of disjoint intervals of total length
not less than 1.

Solution. The result holds when there is one interval. Suppose that n is an odd number greater than 1
and, as an induction hypothesis, that the result holds for any odd number of intervals fewer than n. Since all
of the intervals have the same length, they can be linearly ordered from left to right. Let Z be the rightmost
interval and Y the next to rightmost interval. Let T be the union of all the intervals but Y and Z, and S′

the set of points that belong to an odd number of the intervals making up T . By the induction hypothesis,
S′ is the union of a finite number of disjoint intervals not less than 1.

S contains the entire interval Z\Y , as points here are contained only in Z; S ∩ (Y ∩Z) = S′ ∩ (Y ∩Z),
as we are adding evenly many intervals to the collection making up T for the points in Y ∩Z. Thus, the only
points that lie in S′ but not in S must lie within Y \Z. Note that these points deleted from S′ constitute
a union of intervals, since they are obtained by intersecting intervals. Since Y and Z have equal length,
|Y \Z| = |Z\Y | and so we augment S′ by an interval that exceeds the length of the intervals of S′ deleted.
Therefore, the total length of the intervals making up S is at least 1.
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