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647. Find all continuous functions f : R → R such that

f(x + f(y)) = f(x) + y

for every x, y ∈ R.

648. Prove that for every positive integer n, the integer 1 + 5n + 52n + 53n + 54n is composite.

649. In the triangle ABC, 6 BAC = 20◦ and 6 ACB = 30◦. The point M is located in the interior of triangle
ABC so that 6 MAC = 6 MCA = 10◦. Determine 6 BMC.

650. Suppose that the nonzero real numbers satisfy
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Determine the minimum value of
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651. Determine polynomials a(t), b(t), c(t) with integer coefficients such that the equation y2+2y = x3−x2−x
is satisfied by (x, y) = (a(t)/c(t), b(t)/c(t)).

652. (a) Let m be any positive integer greater than 2, such that x2 ≡ 1 (mod m) whenever the greatest
common divisor of x and m is equal to 1. An example is m = 12. Suppose that n is a positive integer
for which n + 1 is a multiple of m. Prove that the sum of all of the divisors of n is divisible by m.

(b) Does the result in (a) hold when m = 2?

(c) Find all possible values of m that satisfy the condition in (a).

653. Let f(1) = 1 and f(2) = 3. Suppose that, for n ≥ 3, f(n) = max{f(r) + f(n − r) : 1 ≤ r ≤ n − 1}.
Determine necessary and sufficient conditions on the pair (a, b) that f(a + b) = f(a) + f(b).
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