PROBLEMS FOR JULY-AUGUST

Please send your solutions to

Mr. Rosu Mihai 54 Judith Crescent Brampton, ON L6S 3J4

no later than August 31, 2008. Electronic files can be sent to *rosumihai@yahoo.ca*. It is important that your complete mailing address and your email address appear on the front page. If you do not write your family name last, please underline it.

556. Let x, y, z be positive real numbers for which x + y + z = 4. Prove the inequality

$$\frac{1}{2xy + xz + yz} + \frac{1}{xy + 2xz + yz} + \frac{1}{xy + xz + 2yz} \le \frac{1}{xyz}$$

- 557. Suppose that the polynomial $f(x) = (1+x+x^2)^{1004}$ has the expansion $a_0 + a_1x + a_2x^2 + \dots + a_{2008}x^{2008}$. Prove that $a_0 + a_2 + \dots + a_{2008}$ is an odd integer.
- 558. Determine the sum

$$\sum_{m=0}^{n-1} \sum_{k=0}^m \binom{n}{k} \, .$$

- 559. Let ϵ be one of the roots of the equation $x^n = 1$, where *n* is a positive integer. Prove that, for any polynomial $f(x) = a_0 + a_x + \cdots + a_n x^n$ with real coefficients, the sum $\sum_{k=1}^n f(1/\epsilon^k)$ is real.
- 560. Suppose that the numbers x_1, x_2, \dots, x_n all satisfy $-1 \le x_i \le 1$ $(1 \le i \le n)$ and $x_1^3 + x_2^3 + \dots + x_n^3 = 0$. Prove that

$$x_1 + x_2 + \dots + x_n \le \frac{n}{3}$$

561. Solve the equation

$$\left(\frac{1}{10}\right)^{\log_{(1/4)}(\sqrt[4]{x}-1)} - 4^{\log_{10}(\sqrt[4]{x}+5)} = 6 ,$$

for $x \ge 1$.

562. The circles \mathfrak{C} and \mathfrak{D} intersect at the two points A and B. A secant through A intersects \mathfrak{C} at C and \mathfrak{D} at D. On the segments CD, BC, BD, consider the respective points M, N, K for which MN || BD and MK || BC. On the arc BC of the circle \mathfrak{C} that does not contain A, choose E so that $EN \perp BC$, and on the arc BD of the circle \mathfrak{D} that does not contain A, choose F so that $FK \perp BD$. Prove that angle EMF is right.