PROBLEMS FOR SEPTEMBER

Please send your solution to
Edward J. Barbeau
Department of Mathematics
University of Toronto
40 St. George Street
Toronto, ON M5S 2E4
no later than October 15, 2007. It is important that your complete mailing address and your email address appear on the front page. If you do not write your family name last, please underline it.
514. Prove that there do not exist polynomials $f(x)$ and $g(x)$ with complex coefficients for which

$$
\log _{b} x=\frac{f(x)}{g(x)}
$$

where b is any base exceeding 1 .
515. Let n be a fixed positive integer exceeding 1 . To any choice of n real numbers x_{i} satisfying $0 \leq x_{i} \leq 1$, we can associate the sum

$$
\sum\left\{\left|x_{i}-x_{j}\right|: 1 \leq i<j \leq n\right\}
$$

What is the maximum possible value of this sum and for which values of the x_{i} is it assumed?
516. Let $n \geq 1$. Is it true that, for any $2 n+1$ positive real numbers $x_{1}, x_{2}, \cdots, x_{2 n+1}$, we have that

$$
\frac{x_{1} x_{2}}{x_{3}}+\frac{x_{2} x_{3}}{x_{4}}+\cdots+\frac{x_{2 n+1} x_{1}}{x_{2}} \geq x_{1}+x_{2}+\cdots+x_{2 n+1}
$$

with equality if and only if all the x_{i} are equal?
517. A man bought four items in a Seven-Eleven store. The clerk entered the four prices into a pocket calculator and multiplied to get a result of 7.11 dollars. When the customer objected to this procedure, the clerk realized that he should have added and redid the calculation. To his surprise, he again got the answer 7.11. What did the four items cost?
518. Let I be the incentre of triangle $A B C$, and let $A I, B I, C I$, produced, intersect the circumcircle of triangle $A B C$ at the respective points D, E, F. Prove that $E F \perp A D$.
519. Let $A B$ be a diameter of a circle and X any point other than A and B on the circumference of the circle. Let t_{A}, t_{B} and t_{X} be the tangents to the circle at the respective points A, B and X. Suppose that $A X$ meets t_{B} at Z and $B X$ meets t_{A} at Y. Show that the three lines $Y Z, t_{X}$ and $A B$ are either concurrent (1.e. passing through a common point) or parallel.
520. The diameter of a plane figure is the largest distance between any pair of points in the figure. Given an equilateral triangle of side 1 , show how, by a stright cut, one can get two pieces that can be rearranged to form a figure with minimum diameter
(a) if the resulting figure is convex (i.e. the line segment joining any two of its points must lie inside the figure);
(b) if the resulting figure is not necessaarily convex, but it is connected (i.e. any two points in the figure can be connected by a curve lying inside the figure).

