
Solutions to the February problems.

348. (b) Suppose that f(x) is a real-valued function defined for real values of x. Suppose that both f(x)−3x
and f(x)−x3 are increasing functions. Must f(x)−x−x2 also be increasing on all of the real numbers,
or on at least the positive reals?

Solution 1. Let u ≥ v. Suppose that u+v ≤ 2. Then, since f(x)−3x is increasing, f(u)−3u ≥ f(v)−3v,
whence

f(u)− f(v) ≥ 3(u− v) ≥ (u + v + 1)(u− v) = u2 − v2 + u− v =⇒ f(u)− u− u2 ≥ f(v)− v − v2 .

Suppose that u + v ≥ 2. Then, since f(x)− x3 is increasing,

f(u)− u3 ≥ f(v)− v3 =⇒ f(u)− f(v) ≥ u3 − v3 = (u− v)(u2 + uv + v2) .

Now
2[(u2 + uv + v2)− (u + v + 1)] = (u + v)2 + (u− 1)2 + (v − 1)2 − 4 ≥ 0 ,

so that u2 + uv + v2 ≥ u + v + 1 and

f(u)− f(v) ≥ (u− v)(u + v + 1) = u2 − v2 + u− v =⇒ f(u)− u− u2 ≥ f(v)− v − v2 .

Hence f(u)− u− u2 ≥ f(v)− v − v2 whenever u ≥ v, so that f(x)− x− x2 is increasing. ♠

Solution 2. [F. Barekat] Let u ≥ v. Then, as in Solution 1, we find that f(u) − f(v) ≥ 3(u − v) and
f(u)− f(v) ≥ u3 − v3 = (u− v)(u2 + uv + v2). If 1 ≥ u ≥ v, then 3 ≥ u + v + 1, so that

f(u)− f(v) ≥ 3(u− v) ≥ (u + v + 1)(u− v) .

If u ≥ v ≥ 1, then u2 ≥ u, v2 ≥ v and

f(u)− f(v) ≥ (u− v)(u2 + uv + v2) ≥ (u− v)(u + 1 + v) .

In either case, we have that f(u)− u− u2 ≥ f(v)− v − v2. Finally, if u ≥ 1 ≥ v, then

f(u)− u− u2 ≥ f(1)− 2 ≥ f(v)− v − v2 .

The result follows. ♠

Comment. D. Dziabenko assumed that f was differentiable on R, so that f ′(x) ≥ 3 and f ′(x) ≥ 3x2

everywhere. Hence, for all x, 3f ′(x) ≥ 3x2 + 6, so that f ′(x) ≥ x2 + 2 ≥ 2x + 1. Hence, the derivative of
f(x) − x − x2 is always nonnegative, so that f(x) − x − x2 is increasing. However, there is nothing in the
hypothesis that forces f to be differentiable, so this is only a partial solution and its solver would have to
settle for a grade of 2 out of 7. A little knowledge is a dangerous thing. If calculus is used, you need to make
sure that everything is in place, all assumptions made identified and justified. Often, a more efficient and
transparent solution exists without recourse to calculus.

360. Eliminate θ from the two equations
x = cot θ + tan θ

y = sec θ − cos θ ,

to get a polynomial equation satisfied by x and y.

Solution 1. We have that

x =
cos θ

sin θ
+

sin θ

cos θ
=

1
sin θ cos θ

=⇒ sin θ cos θ =
1
x

.
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y =
1

cos θ
− cos θ =

sin2 θ

cos θ
.

Hence
sin3 θ =

y

x
and cos3 θ =

1
x2y

so that (
y

x

) 2
3

+
(

1
x2y

) 2
3

= 1 =⇒ (xy2)
2
3 + 1 = (x2y)

2
3

=⇒ (x2y)2 = 1 + (xy2)2 + 3(xy2)
2
3 (x2y)

2
3 = 1 + x2y4 + 3x2y2 .

Hence
x4y2 = 1 + x2y4 + 3x2y2 .♠

Solution 2. [D. Dziabenko] Since sin3 θ = y/x and cos3 θ = 1/(x2y),

y2

x2
+

1
x4y2

= sin6 θ + cos6 θ

= (sin2 θ + cos2 θ)3 − 3(sin2 θ + cos2 θ) sin2 θ cos2 θ

= 1− 3
x2

.

Hence x2y4 + 1 = x4y2 − 3x2y2. ♠

Solution 3. [P. Shi] Using the fact that cos3 θ = 1/(x2y) in the expression for y, we find that

y3 = x2y − 3y − 1
x2y

=⇒ x2y4 = x4y2 − 3x2y2 − 1 .♠

Solution 4. [Y. Zhao] Since sin3 θ = y/x and cos3 θ = 1/(x2y), we have that

3

√
y2

x2
+ 3

√
1

x4y2
− 1 = 0 .

Using the identity a3+b3+c3−3abc = (a+b+c)(a2+b2+c2−ab−bc−ca) with the substitution a = 3
√

y2/x2,
b = 3

√
1/(x4y2), c = −1, we obtain that

y2

x2
+

1
x4y2

− 1 +
3
x2

= 0

or
x2y4 + 1− x4y2 + 3x2y2 = 0 .♠

Comment. In a question like this, it is very easy to make a mechanical slip. Accordingly, it is prudent
to make a convenient substitution of values to see if your identity works. For example, when θ = π/4, x = 2
and y = 1/

√
2, and we find that the identity checks out.

361. Let ABCD be a square, M a point on the side BC, and N a point on the side CD for which BM = CN .
Suppose that AM and AN intersect BD and P and Q respectively. Prove that a triangle can be
constructed with sides of length |BP |, |PQ|, |QD|, one of whose angles is equal to 60◦.

Solution 1. Let the sides of the square have length 1 and let |BM | = u. Then |NC| = u and |MC| =
|ND| = 1 − u. Let |BP | = a, |PQ| = b and |QD| = c. Since triangles APD and MPB are similar,
(a/u) = b + c. Since triangle DQN and BQA are similar, (c/(1− u))) = a + b. Hence

(1− u + u2)a = (2u− u2)b and (1− u + u2)c = (1− u2)b
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so that
a : b : c = (2u− u2) : (1− u + u2) : (1− u2) .

Now
(2u− u2)2 + (1− u2)2 − 2(2u− u2)(1− u2) cos 60◦

= (4u2 − 4u3 + u4) + (1− 2u2 + u4)− (2u− 2u3 − u2 + u4)

= u4 − 2u3 + 3u2 − 2u + 1 = (1− u + u2)2 .

Thus b2 = a2 + c2 − ac. Note that this implies that (a − c)2 < b2 < (a + c)2, whence a < b + c, b < a + c
and c < a + b. Accordingly, a, b, c are the sides of a triangle and b2 = a2 + c2 = 1

2 cos 60◦. From the law of
cosines, the result follows. ♠

Solution 2. [F. Barekat] Lemma. Let PQR be a right triangle with 6 R = 90◦, |QR| = p and |PR| = q.
Then the length m of the bisector RT of angle R (with T on PQ) is equal to (

√
2pq)/(p + q).

Proof. [PQR] = [QRT ]+ [PRT ] =⇒ 1
2pq = 1

2pm sin 45◦ + 1
2qm sin 45◦, from which the result follows. ♣

Using the same notation as in Solution 1, the above lemma and the fact that BD bisects the right angles
at B and D, we find that

a =
√

2u

1 + u
, c =

√
2(1− u)
2− u

, b =
√

2− a− c .

Hence
(a2 + c2 − 2ac cos 60◦)− b2 = (a2 + c2 − ac)− (2 + a2 + c2) + 2

√
2(a + c)− 2ac

= 2
√

2(a + c)− 3ac− 2

=
2

(1 + u)(2− u)
[2u(2− u) + 2(1 + u)(1− u)− 3u(1− u)− (1 + u)(2− u)]

=
2

(1 + u)(2− u)
[4u− 2u2 + 2− 2u2 − 3u + 3u2 − 2− u + u2] = 0 .

Hence b2 = a2 + c2 − 2ac cos 60◦ and the result follows from the law of cosines. ♠

Comment. P. Shi used Menelaus’ Theorem with triangle BOC and transversal APM and with triangle
COD and transversal AQN to get

|BP |
|PO|

· |OA|
|AC|

· |CM |
|MB|

=
|DQ|
|QO|

· |OA|
|AC|

· |CN |
|ND|

= 1 ,

where O is the centre of the square. Noting that |PO| = (1/
√

2)− |BP | and |QO| = (1/
√

2)− |DQ|, we can
determine the lengths of BP and DQ.

362. The triangle ABC is inscribed in a circle. The interior bisectors of the angles A, B, C meet the circle
again at U , V , W , respectively. Prove that the area of triangle UV W is not less than the area of triangle
ABC.

Solution 1. Let R be the common circumradius of the triangles ABC and UV W . Observe that 6 WUA =
6 WCA = 1

2
6 ACB and 6 V UA = 6 V BA = 1

2
6 ABC, whence

U = 6 WUV =
1
2
(6 ACB + 6 ABC) =

1
2
(B + C) ,

et cetera. Now

[ABC] =
abc

4R
= 2R2 sinA sinB sinC
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and
[UV W ] =

uvw

4R
= 2R2 sinU sinV sinW .

Since by the arithmetic-geometric means inequality,

√
sinA sinB = 2

√
(sin

A

2
cos

B

2
)(cos

A

2
sin

B

2
)

≤ sin
A

2
cos

B

2
+ cos

A

2
sin

B

2

= sin
A + B

2
= sinW ,

et cetera, it follows that [ABC] ≤ [UV W ] with equality if and only if ABC is an equilateral triangle. ♠

Second solution. Since 1
2 (A + B) = 90◦ − C

2 , we find that

[ABC] = 2R2 sinA sinB sinC = 16R2 sin
A

2
cos

A

2
sin

B

2
cos

B

2
sin

C

2
cos

C

2

and
[UV W ] = 2R2 sinU sinV sinW = 2R2 cos

A

2
cos

B

2
cos

C

2
,

so that
[ABC]
[UV W ]

= 8 sin
A

2
sin

B

2
sin

C

2

= 8

√
(s− b)(s− c)

bc

√
(s− c)(s− a)

ac

√
(s− a)(s− b)

ab

=
8(s− a)(s− b)(s− c)

abc
=

8[ABC]2

sabc
=

2r

R
≤ 1

bu Euler’s inequality for the inradius and the circumradius. The result follows. ♠

Third solution. Let I be the incentre and H the orthocentre of triangle ABC. Suppose the respective
altitudes from A, B, C meet the circumcircle at P , Q, R. We have that

6 BHP = 6 AHQ = 90◦ − 6 HAC = 90◦ − 6 PAC = 90◦ − 6 PBC = 6 BPH

so that BH = BP . Similarly, CH = CP . Hence ∆HBC ≡ ∆PBC (SSS). Similarly ∆HAC ≡ ∆QAC and
∆HAB ≡ ∆RAB, whence [ARBPCQ] = 2[ABC].

Let AU intersect V W at X. Then

6 V XA = 6 XWA + 6 XAW = 6 V WA + 6 UAB + 6 WAB

= 6 V BA + 6 UAB + 6 WCB =
1
2
(6 B + 6 A + 6 C) = 90◦ ,

so that UA is an altitude of triangle UV W , as similarly are V B and WC (so that I is the orthocentre of
triangle UV W ). Therefore, we have, as above, that [UCV AWB] = 2[UV W ].

But U is the midpoint of the arc BC, V the midpoint of the arc CA and W the modpoint of the orc AB.
Thus, [CPB] ≤ [CUB], [AQC] ≤ [AV C] and [BRA] ≤ [BWA]. Therefore, [ARBPCQ] ≤ [UCV AWB] and
so [ABC] ≤ [UV W ]. ♠

Comment. F. Barekat noted that for 0 < x < π, the function log sinx is concave so that
√

sinu sin v ≤
sin( 1

2 (u + v)) for 0 ≤ u, v ≤ π. (This can be seen by noting that the second derivative of log sinx is
− csc2 x < 0.) Then the solution can be completed as in Solution 1.
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363. Suppose that x and y are positive real numbers. Find all real solutions of the equation

2xy

x + y
+

√
x2 + y2

2
=
√

xy +
x + y

2
.

Preliminaries. It is clear that if one of x and y vanishes, then so must the other. Otherwise, there are
two possibilities, according as x and y are both negative or both positive (

√
xy needs to make sense). If x

and y are both negative, then the only solution is x = y as the equation asserts that the sum of the harmonic
and geometric means of −x and −y is equal to the sum of the arithmetic mean and root-mean-square of these
quantities. For unequal positive reals, each of the first two is less than each of the second two. Henceforth,

we assume that x and y are positive. Let h = 2xy/(x + y), g =
√

xy, a = 1
2 (x + y) and r =

√
1
2 (x2 + y2).

Solution 1. It is straightforward to check that 2a2 = r2+g2 and that g2 = ah. Suppose that h+r = a+g.
Then

r = a + g − h

=⇒ 2a2 − g2 = r2 = a2 + g2 + h2 − 2ah− 2gh + 2ag

=⇒ (a + h)(a− h) = a2 − h2 = 2(g2 − ah) + 2g(a− h) = 0 + 2g(a− h)
=⇒ a = h or a + h = 2g .

In the latter case, g = 1
2 (a + h) =

√
ah, so that both possibilities entail a = g = h. But equality of these

means occur if and only if x = y. ♠

Solution 2. [A. Cornuneanu] Observe that

r2 − g2 =
1
2
(x− y)2 = 2a(a− h) .

Since, from the given equation,

r2 − g2 = (r − g)(r + g) = (a− h)(r + g) ,

it follows that a = 1
2 (r + g). However, it can be checked that, in general,

a =

√
r2 + g2

2
,

so that a is at once the arithmetic mean and the root-mean-square of r and g. But this can occur if and
only if r = g = a if and only if x = y. ♠

Solution 3. [R. O’Donnell] From the homogeneity of the given equation, we can assume without loss of
generality that g = 1 so that y = 1/x. Then h = 1/a and r =

√
2a2 − 1. The equation becomes

r +
1
a

= a + 1 or
√

2a2 − 1 = 1 + a− 1
a

.

Squaring and manipulating leads to

0 = a4 − 2a3 + 2a− 1 = (a− 1)3(a + 1)

whence a = 1 = g and so x = y = 1. The main result follows from this. ♠

Solution 4. [D. Dziabenko] Let 2a = x + y and 2b = x− y, so that x = a + b and y = a− b, Then a 6= 0,
a ≥ b and the equation becomes

a2 − b2

a
+

√
a2 + b2 =

√
a2 − b2 + a ⇐⇒

√
a2 + b2 −

√
a2 − b2 =

b2

a
.
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Multiplying by
√

a2 + b2 +
√

a2 − b2 yields that

2b2 = (a2 + b2)− (a2 − b2) =
b2

a
(
√

a2 + b2 +
√

a2 − b2) ,

from which √
a2 + b2 +

√
a2 − b2

2
= a =

√
(a2 + b2) + (a2 − b2)

2
.

The left side is the arithmetic mean and the right the root-mean-square of
√

a2 + b2 and
√

a2 − b2. These
are equal if and only if a2 + b2 = a2 − b2 ⇔ b = 0 ↔ x = y. ♠

364. Determine necessary and sufficient conditions on the positive integers a and b such that the vulgar
fraction a/b has the following property: Suppose that one successively tosses a coin and finds at one
time, the fraction of heads is less than a/b and that at a later time, the fraction of heads is greater than
a/b; then at some intermediate time, the fraction of heads must be exactly a/b.

Solution. Consider the situation in which a tail is tossed first, and then a head is tossed thereafter.
Then the fraction of heads after n tosses is (n − 1)/n. Since any positive fraction a/b less than 1 exceeds
this for n = 1 and is less than this for n sufficiently large, a/b can be realized as a fraction of head tosses
only if it is of this form (i.e. a = b− 1).

On the other hand, suppose that a/b = (n−1)/n for some positive integer n. There must exist numbers
p and q for which the fraction p/q of heads at one toss is less than a/b and the fraction (p + 1)/(q + 1) at
the next toss is not less than a/b. Thus

p

q
<

n− 1
n

≤ p + 1
q + 1

.

Hence np < nq − q and nq − q + n− 1 ≤ np + n, so that

np < nq − q ≤ np + 1 .

Since the three members of this inequality are integers and the outer two are consecutive, we must have
nq − q = np + 1, whence

n− 1
n

=
p + 1
q + 1

.

Hence the necessary and sufficient condition is that a/b = (n− 1)/n for some positive integer n. ♠

Rider. What is the situation when the fraction of heads moves from a number greater than a/b to a
number less than a/b?

365. Let p(z) be a polynomial of degree greater than 4 with complex coefficients. Prove that p(z) must have
a pair u, v of roots, not necessarily distinct, for which the real parts of both u/v and v/u are positive.
Show that this does not necessarily hold for polynomials of degree 4.

Solution. Since the degree of the polynomial exceeds 4, there must be two roots u, v in one of the
four quadrants containing a ray from the origin along either the real or the imaginary axis along with all
the points within the region bounded by this ray and the next such ray in the counterclockwise direction.
The difference in the arguments between two such numbers must be strictly between −π

2 and π
2 . Since

arg(u/v) = argu− argv and arg(v/u) = argv− argu both lie in this range, both u/v and v/u lie to the right
of the imaginary axis, and so have positive real parts.

This result does not necessarily hold for a polynomial of degree 4, as witnessed by z4 − 1 whose roots
are 1,−1, i,−i.
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366. What is the largest real number r for which

x2 + y2 + z2 + xy + yz + zx√
x +

√
y +

√
z

≥ r

holds for all positive real values of x, y, z for which xyz = 1.

Solution 1. Let u, v, w be positive reals for which u2 = yz, v2 = zx and w2 = xy. Then
√

x = x
√

yz =
xu,

√
y = yv and

√
z = zw, so that

(x2 + y2 + z2) + (xy + yz + zx) = (x2 + y2 + z2) + (u2 + v2 + w2)

≥ 2
√

x2 + y2 + z2
√

u2 + v2 + w2 ≥ 2(xu + yv + zw) ,

from the arithmetic-geometric means and the Cauchy-Schwarz inequalities. Hence, the inequality is always
valid when r ≤ 2. When (x, y, z) = (1, 1, 1), the left side is equal to 2, so the inequality does not always hold
when r > 2. Hence the largest value of r is 2. ♠

Solution 2. App;ying the arithmetic-geometric means inequality to the left side yields

(x2 + yz) + (y2 + zx) + (z2 + xy)√
x +

√
y +

√
z

≥ 2(
√

x2yz +
√

y2zx +
√

z2xy√
x +

√
y +

√
z

=
2
√

xyz(
√

x +
√

y +
√

z)
√

x +
√

y +
√

z
= 2 .

Equality occurs when (x, y, z) = (1, 1, 1). Hence the largest value of r for which the inequality always holds
is 2. ♠
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