
Solutions to the August problems

395. None of the nine participants at a meeting speaks more than three languages. Two of any three speakers
speak a common language. Show that there is a language spoken by at least three participants.

Solution 1. Case (i). Each pair has a common language. There are
(
9
2

)
= 36 pairs with at most

3× 9 = 27 languages. By the Pigeonhole Principle, there exists a language spoken by at least two different
pairs, which includes either three or four participants.

Case (ii). There exists a pair consisting of, say, A and B, who have no language in common. These
two know k languages between them, where 2 ≤ k ≤ 6. Let the other participants be P1, · · · , P7. Consider
each triplet {A,B, Pi}, we see that each participant Pi knows at least one of the k languages. By the
Pigeonhole Principle, one of the k languages is known by at least two of the Pi along with either A or B.
The result follows.

Solution 2. [F. Barekat] If every speaker speaks a language shared by two other participants, then the
result holds. On the other hand, suppose that there is a participant P each of whose languages is shared
by at most one other person. Then at most three people speak one of P ’s languages and there are five
participants, A,B,C, D, E, who have no language in common with P . Considering each pair of these five
with P , we see that each pair of the five participants speaks a common language. Thus, A shares a language
with each of B,C,D,E, and, speaking at most three languages, must share the same language with two of
them. The result follows.

Solution 3. [A. Kong] We prove the result by contradiction. Suppose if possible that no language is
spoken by more than two participants. Form a graph with 9 vertices corresponding to the participants and
connect two vertices by an edge if and only if the corresponding participants have a common language. The
number of edges does not exceed the number of languages. There are

(
9
3

)
= 84 triplets of vertices, each

of which involves at least one edge. Any edge can be involved in at most 7 triplets. As two edges can be
involved in 14 distinct triplets only if the edges have no common vertex, we can find at most four edges that
can be involved in seven triplets each with no two triplets having an edge in common. Since each vertex
can be an endpoint of at most three edges and each edge involves two vertices, the number of edges is at
most b 1

2 (3 × 9)c = 13 = 7 + 6. Hence, the number of triplets that are involved with these edges is at most
4× 7 + 9× 6 = 82, a contradiction.

Comment. The hypothesis allows for the possibility that some participant may know fewer that three
languages, so you should not base your argument on everyone knowing exactly three languages. This is a
situation where a contradiction argument can be avoided, and you should try to do so.

396. Place 32 white and 32 black checkers on a 8×8 square chessboard. Two checkers of different colours form
a related pair if they are placed in either the same row or the same column. Determine the maximum
and the minimum number of related pairs over all possible arrangements of the 64 checkers.

Solution. The maximum number of related pairs is 256, achieved by putting 4×4 blocks of black checkers
in diagonally opposite corners of the board and 4×4 blocks of white checkers in the other diagonally opposite
corner, or else by alternating the colours as on a standard chessboard. The minimum number of related
pairs is 128, achieved by filling four columns entirely with black checkers and the other four columns with
white checkers. We now prove that these bounds hold.

Suppose that in a given row or column, there are x black and 8 − x white checkers. Then the number
of related pairs is

x(8− x) = 16− (x− 4)2 ≤ 16

with equality if and only if x = 4. Hence the total number of related pairs cannot exceed 16× 16 = 256.

The number of related pairs is independent of the order in which the rows or columns of checkers appear,
so, wolog, we may suppose that the number of white checkers in the columns decreases as we go from left
to right. Suppose that there is a white checker to the right of a black checker in some row, so that the
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white checker appears in a column with r white checkers and the black checker appears in a column with s
white checkers, where r ≤ s. Suppose now that we interchange the positions of just these two checkers. The
number of related pairs in the rows remains unchanged, while the number of related pairs in the columns
gets reduced by

[r(8− r) + s(8− s)]− [(r − 1)(9− r) + (s + 1)(7− s)] = 2(s + 1− r) > 0 .

We can continue this sort of exchange, reducing the number of related pairs each time, until every white
checker is to the left of all the black checkers in the same row. Thus, we need consider only configurations
in which no black checker is to the left of or above white checker.

Suppose that the ith row has xi white checkers and the jth column has yj white checkers, where
8 ≥ x1 ≥ x2 ≥ · · · ≥ x8 ≥ 0 and 8 ≥ y1 ≥ y2 ≥ · · · ≥ y8 ≥ 0. We have that a1 + · · ·+x8 = y1 + · · ·+y8 = 32.
Setting x9 = 0, we see that for each i, xi − xi+1 is equal to the number of indices j for which yj = i.

The total number of related pairs is

8∑
i=1

xi(8− xi) +
8∑

j=1

yj(8− yj) = 8×
∑

xi + 8×
∑

yj −
∑

x2
i −

∑
y2

j

= 8× 32 + 8× 32− (x2
1 + · · ·+ x2

8)−
8∑

i=1

(xi − xi+1)i2

= 512− [(x2
1 + · · ·+ x2

8) + (x1 − x2) + 4(x2 − x3) + 9(x3 − x4) + · · ·]
= 512− [(x1 + x2

2 + 2x2 + x2
3 + 4x3 + · · ·) + (x1 + · · ·+ x8)]

= 512− [x2
1 + (x2 + 1)2 + · · ·+ (x8 + 7)2 − 140 + 32]

= 620− [x2
1 + (x2 + 1)2 + · · ·+ (x8 + 7)2] .

Thus, we require the maximum of x2
1 + (x2 + 1)2 + · · · + (x8 + 7)2 when x1 + · · · + x8 = 32 and 8 ≥ x1 ≥

· · · ≥ x8 ≥ 0.

At this point, the argument becomes tedious and a simpler one is sought. Let zi = xi + (i − 1) with
1 ≤ i ≤ 8. It is straightforward to check that x5 ≤ 6, x6 ≤ 5, x7 ≤ 4 and x8 ≤ 4, so that z1 ≤ 8, z2 ≤ 9,
z3 ≤ 10, z4 ≤ 11, z5 ≤ 10, z6 ≤ 10, z7 ≤ 10 and z8 ≤ 11. The value 11 is possible for zi only when i = 4 and
we must have (x1, · · · , x8) = (8, 8, 8, 8, 0, 0, 0, 0) or i = 8 and we must have (x1, · · · , x8) = (4, 4, 4, 4, 4, 4, 4, 4).
In both cases, the square sum is 492. In a similar way, we find that x1 ≥ 4, x2 ≥ 4, x3 ≥ 3, x4 ≥ 2
and so z1 ≥ 4, z2 ≥ 5, z3 ≥ 5, z4 ≥ 5, z5 ≥ 4, z6 ≥ 5, z7 ≥ 6, z8 ≥ 7. The value 4 is possible for
zi only when i = 1 or i = 5 and we have (x1, · · · , x8) = (8, 8, 8, 8, 0, 0, 0, 0) or i = 8 and we must have
(x1, · · · , x8) = (4, 4, 4, 4, 4, 4, 4, 4). Otherwise, we must have 5 ≤ zi ≤ 10 for each i, and checking out the
possibilities leads to square sums less than 492.

397. The altitude from A of triangle ABC intersects BC in D. A circle touches BC at D, intersects AB at
M and N , and intersects AC at P and Q. Prove that

(AM + AN) : AC = (AP + AQ) : AB .

Solution 1. Let the circle intersect AD again at E.

(AE + AD) ·AD = AE ·AD + AD2 = AM ·AN + AB2 −BD2

= AM ·AN + AB2 −BN ·BM = AM ·AN + (AN + NB) · (AM + MB)−BN ·BM

= AM ·AN + AN ·AB + NB ·AM = AM · (AN + NB) + AN ·AB

= (AM + AN) ·AB .

Similarly, (AE + AD) ·AD = (AP + AQ) ·AC. The result follows.
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Solution 2. [F. Barekat] Let O be the centre of the circle, and let S and T be the respective midpoints
of MN and PQ. Then OS ⊥ AB, OT ⊥ AC,

AM + AN = 2AS = 2AO cos 6 BAD = 2AO sin 6 ABC

and
AP + AQ = 2AT = 2AO cos 6 CAD = 2AO sin 6 ACB .

Hence
AB : AC = sin 6 ACB : sin 6 ABC = (AP + AQ) : (AM + AN)

as desired.

398. Given three disjoint circles in the plane, construct a point in the plane so that all three circles subtend
the same angle at that point.

Solution. If two circles of radii r and R are given with respective centres O and P , and if Q is a point
at which both circles subtend equal angles, then OQ : OP = r : R. To prove this, draw tangents from Q
to meet the circles of centres O and P at A and B respectively, so that 6 AQO and 6 BQP are half the
subtended angles. Then the proportion is a consequence of the similarity of the triangles QAO and QBP .

Suppose first that r < R. The locus of Q turns out to be a circle (a circle of Apollonius). One way to
see this is to introduce coordinates with O at the origin, P at (p, 0) and Q at (x, y). The equation of the
locus is

√
x2 + y2 = (r/R)

√
(x− p)2 + y2. This simplifies to (R2 − r2)(x2 + y2) + 2pr2x − p2r2 = 0, the

equation of a circle. Let one pair of common tangents to the circles intersect at the point V on the same
side of both circles and the other pair at W between the two circles. V is the centre of a dilation with factor
r/R that takes the larger circle to the smaller, and W is the centre of a dilation with factor −r/R that takes
the larger circle to the smaller. V and W both lie on the locus and form a line of symmetry for the locus;
hence it is a diameter of the locus circle. So to construct the locus, it suffices to determine the points V and
W . This can be done for example by drawing parallel diameters to the two circles and noting that the line
joining pairs of their endpoints must pass through either V or W (since the dilations takes one diameter to
the other).

To solve the problem, for each of two pairs of the three circles, determine circle at which the two circles
subtend equal angles. If these circles intersect, then the intersection points will be points at which all three
circles subtend equal angles.

It remains to consider the case where at least two of the circles have the same radius. In this case, a
reflection about the right bisector of the line of centres takes one circle to the other, and this right bisector
is the locus desired. So the desired point is in this case, either the intersection of a line and a circle or of
two lines.

399. Let n and k be positive integers for which k < n. Determine the number of ways of choosing k numbers
from {1, 2, · · · , n} so that no three consecutive numbers appear in any choice.

Solution 1. An admissible choice of k numbers corresponds to a sequence of k 1’s and n − k 0’s in a
sequence of n terms where 1 appears in the ith position if and only if i is selected as one of the k numbers
and three 1’s do not appear consecutively. We count the number of such sequences.

Suppose that an admissible sequence has a occurrences of 11 and b occurrences of 1, separated by 0’s, so
that k = 2a+b. The patterns of two 1’s can be interpolated among the patterns of one 1 in

(
a+b

a

)
ways. a+b−1

zeros must be placed in that many slots between adjacent patterns of 11 and 1. (If a + b− 1 > n− k, then
a sequence of the type specified cannot occur, but this will automatically come out in the final expression.)

If a + b − 1 ≤ n − k, then (n − k) − (a + b − 1) 0’s remain to be allocated, either at the beginning or
the end of the sequence or in the a + b− 1 slots that already contain one 0. Recall that u identical objects
can be distributed among v distinguishable boxes in

(
u+v−1

v−1

)
ways. (To see this, place u + v − 1 identical
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objects in a line; select v− 1 gaps between adjacent pairs to determine a partition into v boxes each with at
least one object; now, remove the superfluous v objects, one from each box.) Applying this to the present
situation, we deduce that the spare (n− k)− (a + b− 1) 0’s can be distributed in(

n− k − (a + b− 1) + (a + b− 1)− 1
a + b− 1

)
=

(
n− k − 1

k − a

)
ways.

Thus, the total number of ways of selecting an admissible set of k numbers form {1, 2, · · · , n} is

∑
{
(

a + b

b

)(
n− k + 1

a + b

)
: 2a + b = k, a ≥ 0, b ≥ 0} =

∑
a≥0

(
k − a

a

)(
n− k + 1

k − a

)
.

Solution 2. [K. Kim] Reformulate the problem as selecting a sequence of n integers with k ones and
n− k zeros, with 1 being selected if and only if i is selected from among {1, 2, · · · , n}. At most two ones can
appear side by side. Begin with the n−k zeros; there are n−k +1 “slots” separated by the zeros into which
we may insert 0, 1 or 2 ones. Suppose that we have i pairs of ones in the slots, where 0 ≤ 2i ≤ k. We can
pick the slots for these in

(
n−k+1

i

)
ways. There are n− k + 1− i slots left over and we can fit the remaining

singelton ones in them in
(
n−k+1−i

k−2i

)
ways. Hence the total number of ways is

∑ {(
n− k + 1

i

)(
n− k + 1− i

k − 2i

)
: 0 ≤ 2i ≤ k

}
.

Solution 3. [F. Barekat] Recall that

(1− x)−t =
∞∑

i=0

(
t + i− 1

t− 1

)
xi .

We transform the given problem into an equivalent problem. Each choice (b1, · · · , bk) of k distinct numbers
from {1, 2, · · · ,m} given in increasing order corresponds to a choice (c1, · · · , ck) of k not necessarily distinct
numbers from {1, 2, · · · , n− k + 1} given in increasing order with ci = bi − (i− 1) (1 ≤ i ≤ k).

Three of the numbers bi are consecutive if and only if the corresponding three numbers ci are equal.
Hence the answer to the problem is equal to the number of choices of k numbers from {1, 2, · · · , n− k + 1}
for which at most two numbers are equal to any value.

For each i with 1 ≤ i ≤ n− k + 1, construct the quadratic 1 + x + x2 and define the generating function

f(x) = (1 + x + x2)n−k+1 = (1− x3)n−k+1(1− x)−(n−k+1)

=
∞∑

j=0

(−1)j

(
n− k + 1

j

)
x3j

∞∑
i=0

(
n + i− k

n− k

)
xi

=
∞∑

k=0

[ ∞∑
j=0

(−1)j

(
n− k + 1

j

)(
n− 3j

n− k

)]
xk .

For each k, the coefficient counts the number of ways we can form xk in the expression f(x) by selecting 1, x
or x2 from the ith factor. This is the answer to the problem.

Comment. A similar argument to that of the third solution gives
∑∞

j=0(−1)j
(
n−k+1

j

)(
n−rj
n−k

)
for the

number of choices that avoid r consecutive integers.

If f(n, k) represents the number of admissible selections, then, for n ≥ 1, f(n, 1) = n and f(n, 2) =
(
n
2

)
and for n ≥ 3, f(n, 3) =

(
n
3

)
− (n− 2) = 1

6 (n− 2)(n− 3)(n + 2).

4



When n ≥ 5. k ≥ 4, we can develop some recursion relations. An admissible set of k numbers can be
selected from {1, 2, · · · , n} not including n in f(n− 1, k) ways. Or we can select n and the remaining k − 1
numbers from {1, 2, · · · , n− 1} provided that both n− 2 and n− 1 are not selected in f(n− 1, k− 1)− f(n−
4, k − 3) ways. Thus,

f(n, k) = f(n− 1, k) + f(n− 1, k − 1)− f(n− 4, k − 3) .

Alternatively, we can look at the three cases where n is not chosen, where n is chosen but n− 1 is not
and where both n and n− 1 are chosen but n− 2 is not. This yields that

f(n, k) = f(n− 1, k) + f(n− 2, k − 1) + f(n− 3, k − 2) .

In particular, we have that f(n, 4) =
(
n
4

)
− (n − 3)2 = 1

24 (n − 3)(n − 4)(n2 + n − 18) and f(n, 5) =(
n
5

)
− 1

2 (n− 3)(n− 4)2 = 1
120 (n− 3)(n− 4)(n− 5)(n− 6)(n + 8).

We have the following table of values

n k → 1 2 3 4 5 6 7
↓
1 1
2 2 1
3 3 3 0
4 4 6 2 0
5 5 10 7 1 0
6 6 15 16 6 0 0
7 7 21 30 19 3 0 0
8 8 28 50 45 16 1 0
9 9 36 77 90 51 10 0

400. Let ar and br (1 ≤ r ≤ n) be real numbers for which a1 ≥ a2 ≥ · · · ≥ an > 0 and

b1 ≥ a1 , b1b2 ≥ a1a2 , b1b2b3 ≥ a1a2a3 , · · · , b1b2 · · · bn ≥ a1a2 · · · an .

Show that
b1 + b2 + · · ·+ bn ≥ a1 + a2 + · · ·+ an .

Solution. Since b1 · · · bs > 0 for all s, each bi is positive. Let c0 = 1 and define

c1 =
b1

a1
, c2 =

b1b2

a1a2
, · · · , cn =

b1b2 · · · bn

a1a2 · · · an
.

Then ci ≥ 1 and
bi =

ci

ci−1
ai

for 1 ≤ i ≤ n. We have that

(b1 + · · ·+ bn)− (a1 + · · ·+ an)

=
(

c1

c0
− 1

)
a1 +

(
c2

c1
− 1

)
a2 + · · ·+

(
cn

cn−1
− 1

)
an

= (c1 − 1)(a1 − a2) +
(

c1 +
c2

c1
− 2

)
(a2 − a3) +

(
c1 +

c2

c1
+

c3

c2
− 3

)
(a3 − a4) + · · ·

+
(

c1 +
c2

c1
+ · · ·+ ci

ci−1
− i

)
(ai − ai−1) + · · ·+

(
c1 +

c2

c1
+ · · ·+ cn

cn−1
− n

)
an .
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By the Arithmetic-Geometric Means Inequality,

1
i

[
c1 +

c2

c1
+ · · ·+ ci

ci−1

]
≥

[
c1

(
c2

c1

)
· · ·

(
ci

ci−1

)]1/i

= c
1/i
i ≥ 1 ,

so that c1 + (c2/c1) + · · ·+ (ci/ci−1) ≥ i and the result follows.

Comments. The transformation of the series
∑

((ci/ci−1− 1)ai is a standard way of dealing with series,
known as summation by parts and analogous to the calculus technique of integration by parts. It is used as
a means of incorporating the hypothesis a1 ≥ a2 ≥ · · · ≥ an > 0.

An interesting argument comes from F. Barekat who claims a stronger result. The proof almost works,
but there is a small fly in the ointment. It is not clear to me that this can be worked around or whether the
claimed result is false and a counterexample can be found. We suppose that an and bn are defined for all n
such that b1b2 · · · bn ≥ a1a2 · · · an > 0. It is claimed that, for all n,

(b1 + b2 + · · ·+ bn)− (a1 + a2 + · · ·+ an) ≥ an

(
1− a1a2 · · · an

b1b2 · · · bn

)
.

When n = 1, we have that

b1 − a1 = b1

(
1− a1

b1

)
≥ a1

(
1− a1

b1

)
.

Suppose that the result holds for n = m. Then

(b1 + · · ·+ bm + bm+1)− (a1 + · · ·+ am + am+1)− am+1

(
1− a1 · · · amam+1

b1 · · · bmbm+1

)
≥ am

(
1− a1 · · · am

b1 · · · bm

)
+ bm+1 +

am+1a1 · · · am+1

b1 · · · bm+1
− 2am+1

=
1

b1 · · · bm+1
[amb1 · · · bmbm+1 − ambm+1a1 · · · am + bm+1b1 · · · bm+1 + am+1a1 · · · am+1

− 2am+1b1 · · · bm+1]

=
1

b1 · · · bm+1
[b1 · · · bm(ambm+1 + b2

m+1 − 2am+1bm+1)− (a1 · · · am)(ambm+1 − a2
m+1)]

=
1

b1 · · · bm+1
[(b1 · · · bm − a1 · · · am)(ambm+1 + b2

m+1 − 2am+1bm+1)

+ (a1 · · · am)(b2
m+1 − 2am+1bm+1 + a2

m+1)]

=
1

b1 · · · bm+1
[bm+1(b1 · · · bm − a1 · · · am)(am + bm+1 − 2am+1) + (a1 · · · am)(bm+1 − am+1)2]

=
1

b1 · · · bm+1
[bm+1(b1 · · · bm − a1 · · · am)((am − am+1)

+ (bm+1 − am+1)) + (a1 · · · am)(bm+1 − am+1)2] .

The argument can be completed if bm+1 ≥ am+1, but seems to be in trouble otherwise.

401. Five integers are arranged in a circle. The sum of the five integers is positive, but at least one of them
is negative. The configuration is changed by the following moves: at any stage, a negative integer is
selected and its sign is changed; this negative integer is added to each of its (immediate) neighbours
(i.e., its absolute value is subtracted from each of its neighbours).

Prove that, regardless of the negative number selected for each move, the process will eventually termi-
nate with all integers nonnegative in exactly the same number of moves with exactly the same configu-
ration.
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Solution. We associate with each arrangement of numbers a doubly infinite sequence, and analyze how
the corresponding sequence alters with each move. Suppose the numbers, given clockwise, are a, b, c, d, e,
and that their positive sum is s. Pick one number, say a, as a starting point and construct the sequence of
running totals as we proceed closkwise: a, a+ b, a+ b+ c, a+ b+ c+ d, s, s+ a, · · ·. This produces a sequence
of blocks of five numbers for which each block of five is obtained from a previous one by adding s to its
entries, Now extend the sequence backwards, preserving this ”quasi-periodic” property.

We make some observations. The (doubly-infinite) sequence is increasing if and only if all entries in the
circle are nonnegative. If the circle has a negative entry, then the sequence decreases at this particular entry.
Given any term in the sequence, there are at most finitely many terms following it that do not exceed it.

Suppose, without loss of generality, that the number c in the circle is negative and that the sum in the
sequence up to a is t. Then we have the consecutive terms: t, t + b, t + b + c, t + b + c + d, · · ·; note that
t+b+c < t+b. Now perform the operation on the five numbers, selecting c as the relevant negative number.
Then, the numbers in the circle become a, b + c, −c, d + c, e and the corresponding terms in the sequence
are t, t + b + c, t + b, t + b + c + d, · · ·. In other words, the effect on the sequence is that, for every pair of
entries corresponding to b and c, the terms get interchanged, and a decreasing pair become increasing.

We define the following isomorphism (mathematically equivalent situation). Each configuration of five
integers of five integers in a circle with a designated starting entry (a) for the sequence corresponds to a
doubly infinite sequence that has the quasiperiodicity defined above, and every such sequence gives rise
to a circle of five integers. The operation of the problem corresponds to the switching of periodic sets of
decreasing pairs to increasing pairs. Note that the entries of the doubly infinite sequence stay the same; they
just get rearranged.

Suppose that we focus on five consecutive positions in the original doubly infinite sequence. Each of
these has a finite number, say p, of terms following it in the sequence that are smaller, and a finite number,
say q, of terms preceding it that are bigger. Each switiching operation on two entries will decrease p for one
and decrease q for the other. Eventually, each of the five terms in the five original positions will end up p− q
positions to the right and we will have an increasing sequence. The result follows.

Comment. We can go part way, showing that the sequence of moves will terminate, by associating with
each configuration a positive quantity that decreases. With the integers a, b, c, d, e with c < 0 and sum s > 0,
we form the quantity (a− c)2 + (b− d)2 + (c− e)2 + (d− a)2 + (e− b)2. If we make a move, pivoting on c, to
get a, b+c,−c, d+c, e, the corresponding quantity is (a+c)2 +(b−d)2 +(c+e)2 +(d+c−a)(e−b−c)2. This
is smaller than the preceding quantity by the positive amount (−2c)s. This difference depends on the size of
|c|, and so we cannot get a fix on how long it will take to achieve a circle whose integers are all nonnegative.
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