
Solutions of April problems

374. What is the maximum number of numbers that can be selected from {1, 2, 3, · · · , 2005} such that the
difference between any pair of them is not equal to 5?

Solution 1. The maximum number is 1005. For 1 ≤ k ≤ 5, let Sk = {x : 1 ≤ x ≤ 2005, x ≡ k(mod 5)}.
Each set Sk has 401 numbers, and no number is any of the Sk differs from a number in a different Sk by 5
(or even a multiple of 5). Each Sk can be partitioned into 200 pairs and a singleton:

Sk = {k, 5 + k} ∪ {10 + k, 15 + k} ∪ · · · ∪ {1990 + k, 1995 + k} ∪ {2000 + k} .

By the Pigeonhole Principle, each choice of 202 numbers from Sk must contain two numbers in one of the
pairs and so which differ by 5. At most 201 numbers can be selected from each Sk with no two differing
by 5. For example {k, 10 + k, 20 + k, · · · , 2000 + k} will do. Overall, we can select at most 5 × 201 = 1005
numbers, no two differing by 5.

Solution 2. [F. Barekat] The subset {1, 2, 3, 4, 5, 11, 12, 13, 14, 15, · · · , 2001, 2002, 2003, 2004, 2005} con-
tains 1005 numbers, no two differing by 5. Suppose that 1006 numbers are chosen from {1, 2, · · · , 2005}.
Then, at least 1001 of them must come from the following union of 200 sets:

{1, · · · , 10} ∪ {11, · · · , 20} ∪ · · · ∪ {1991, · · · , 2001} .

By the Pigeonhole Principle, at least one of these must contain 6 numbers, two of which must be congruent
modulo 5, and so differ by 5. The result follows.

375. Prove or disprove: there is a set of concentric circles in the plane for which both of the following hold:
(i) each point with integer coordinates lies on one of the circles;
(ii) no two points with integer coefficients lie on the same circle.

Solution. There is such a set of concentric circles satisfying (a) and (b), namely the set of all concentric
circles centred at ( 1

3 ,
√

2). Every point with integer coordinates lies in exactly one of the circles, whose radius
is equal to the distance from the point to the common centre. Suppose that the points (a, b), (c, d) with
integer coordinates both lie on the same circle. Then

(a− (1/3))2 + (b−
√

2)2 = (c− (1/3))2 + (d−
√

2)2

⇐⇒ 9a2 − 6a + 1 + 9b2 − 18
√

2b + 18 = 9c2 − 6c + 1 + 9d2 − 18
√

2d + 18

⇐⇒ 9(a2 + b2 − c2 − d2)− 6(a− c) =
√

2(18d− 18b) .

The left member of the last equation and the coefficient of
√

2 in the right member are both integers. Since√
2 is irrational, both must vanish, so that b = d and

0 = 3(a2 − c2)− 2(a− c) = (a− c)(3(a + c)− 2) .

Since a and c are integers, a + c 6= 2
3 , so that a = c and b = d. Hence, two points with integer coordinates

on the same circle must coincide.

Comment. Since you need a simple example to prove the affirmative, it is cleaner to provide a specific
case rather than describe a general case. Some selected the common centre (

√
2,
√

3), which left them with
a more complicated result to prove, that u+ v

√
2+w

√
3 = 0 for integers u, v, w implies that u = v = w = 0.

The argument for this should be provided, since it is possible to determine irrational α, β and nonzero
integers p, q, r for which p + qα + rβ = 0 (do it!). An efficient way to do it is to start with

u + v
√

2 + w
√

3 = 0 =⇒ u2 = 2v2 + 3w2 + 2
√

6vw .
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376. A soldier has to find whether there are mines buried within or on the boundary of a region in the shape
of an equilateral triangle. The effective range of his detector is one half of the height of the triangle. If
he starts at a vertex, explain how he can select the shortest path for checking that the region is clear of
mines.

Solution. Wolog, suppose the equilateral triangle has sides of length 1, so that the range of his detector
is
√

3/4. Let the triangle be ABC with A the starting vertex. Since the points B and C must be covered,
the soldier must reach the circles of centres B and C and radius

√
3/4. Since 2(

√
3/4) =

√
3/2 < 1, the line

of centres is longer than the sum of the two radii and the circles do not intersect. Suppose that the soldier
crosses the circumference of the circle with centre B at X and of the circle with centre C at Y . Wolog, let
the soldier reach X before Y . Then the total distance travelled by the soldier is not less that

|AX|+ |XY | ≥ |AX|+ |XC| − |Y C| = |AX|+ |XC| − (
√

3/4) .

(Use the triangle inequality.)

Let Z be the midpoint of the arc of the circle with centre B that lies within triangle ABC and W be
the point of intersection of the circle with centre C and the segment CZ. The ellipse with foci A and C that
passes through Z is tangent to the circle with centre B, so that |AX| + |XC| ≥ |AZ| + |ZC|. Hence the
distance travelled by the soldier is at least

|AZ|+ |ZC| − (
√

3/4) = 2(
√

7/4)− (
√

3/4) =
2
√

7−
√

3
4

.

(Use the law of cosines in triangle AZB.) This distance is exactly ( 1
4 )(2

√
7−

√
3) when X = Z and X, Y,C

are collinear. We show that this corresponds to a suitable path.

Let the soldier start at A, proceed to Z and thence walk directly towards C, stopping at the point W .
From the point Z, the soldier covers the points B and M , the midpoint of AC. Let U be any point on AZ
and draw the segment parallel to BM through U joining points on AB and AC. From U , the soldier covers
every point on the segment. It follows that the soldier covers every point in the triangle ABM .

Suppose the line through W perpendicular to AC meets AC at P and BC at Q. As in the foregoing
paragraph, we see that the soldier covers the trapezoid MBQP . Note that the lengths of WP , WC and
WQ all do not exceed

√
3/4. It follows that every point of the segments CP and CQ are no further from

W than
√

3/4. Hence the soldier covers triangle CPQ. Thus, we have a path of minimum length covering
all of triangle ABC.

377. Each side of an equilateral triangle is divided into 7 equal parts. Lines through the division points
parallel to the sides divide the triangle into 49 smaller equilateral triangles whose vertices consist of a
set of 36 points. These 36 points are assigned numbers satisfying both the following conditions:
(a) the number at the vertices of the original triangle are 9, 36 and 121;
(b) for each rhombus composed of two small adjacent triangles, the sum of the numbers placed on one
pair of opposite vertices is equal to the sum of the numbers placed on the other pair of opposite vertices.

Determine the sum of all the numbers. Is such a choice of numbers in fact possible?

Solution 1. The answer is 12(9 + 36 + 121) = 1992.

More generally, let the equilateral triangle be ABC with the numbers a, b, c at the respective vertices
A,B,C. Let the lines of division points parallel to BC, AC and AB be called, respectively, α−lines, β−lines
and γ−lines.

Suppose that u and v are two consecutive entries on, say, an α−line and p, q, r are the adjacent entries
on the next α−line. Then p + v = u + q and q + v = u + r, whence p − q = u − v = q − r. It follows that
any two adjacent points on any α−line have the same difference, so that the numbers along any α−line are
in arithmetic progression. The same applies to β− and γ−lines.
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In this way, we can uniquely determine the points along the sides AB, BC and AC, and then along
each α−line, β−line and γ−line. However, we need to check that such an assignment is consistent, i.e., does
not yield different results for a given entry gained by working along lines from the three different directions.
We do this by describing an assignment, and then showing that it satisfies the condition of the problem.

Let an entry be position i α−lines from BC, j β−lines from AC and k γ−lines from AB. Thus,
any entry on BC corresponds to i = 0 and the points A, B, C, respectively, correspond to (i, j, k) =
(7, 0, 0), (0, 7, 0), (0, 0, 7). Assign to such a point the value 1

7 (ia+jb+kc). It can be checked that these satisfy
the rhombus condition. For example, the points (i, j, k), (i, j−1, k+1), (i+1, j−1, k) and (i+1, j−2, k+1)
are four vertices of a rhombus, and the sum of the numbers assigned to the first and last is equal to the sum
of the numbers assigned to the middle two.

We sum the entries componentwise. Along the ith α−line, there are 8− i entries whose sum is 1
7 [i(8−

i)a + · · ·]. Hence the sum of all entries is

[
1
7

7∑
i=0

i(8− i)a
]

+ · · · = 1
7
[1 · 7 + 2 · 6 + 3 · 5 + 4 · 4 + 5 · 3 + 6 · 2 + 7 · 1]a + · · · = 12a + · · · .

Summing along β−lines and γ−lines, we find that the sum of all entries is 12(a + b + c). In the present
situation, this number is 1992.

Solution 2. [F. Barekat] Let a, b, c be the entries at A, B, C. As in Solution 1, we show that the entries
along each of AB, BC and CA are in arithmetic progression. The sum of the entries along each of these lines
are, respectively, 4(a + b), 4(b + c), 4(c + a) (why?), whence the sum of all the entries along the perimeter
of triangle ABC is equal to

4(a + b) + 4(b + c) + 4(c + a)− (a + b + c) = 7(a + b + c) .

Let p, q, r, respectively, on AB, BC, CA be adjacent to A, B, C and u, v, w, respectively, on AC, BA, CB
be adjacent to A, B, C. When the perimeter of triangle ABC is removed, there remains a triangle XY Z
with sides divided into four equal parts and entries x, y, z, respectively, at vertices X, Y, Z. Since

a + b = p + v , b + c = q + w , c + a = r + u ,

x + y + z = [(p + u)− a] + [(q + v)− b] + [(r + w)− c]
= (p + v) + (q + w) + (r + u)− (a + b + c) = a + b + c .

The sum of the entries along the sides of XY Z is equal to

5
2
(x + y) +

5
2
(y + z) +

5
2
(z + x)− (x + y + z) = 4(a + b + c) .

When the perimeter of triangle XY Z is removed from triangle XY Z, there remains a single small
triangle with three vertices. The sum of the entries at these vertices is x + y + z = a + b + c. Therefore, the
sum of all the entries in the triangular array is 12(a + b + c). In the present situation, the answer is 1992.

378. Let f(x) be a nonconstant polynomial that takes only integer values when x is an integer, and let P be
the set of all primes that divide f(m) for at least one integer m. Prove that P is an infinite set.

Solution 1. Suppose that pk(x) is a polynomial of degree k assuming integer values at x = n, n +
1, · · · , n + k. Then, there are integers ck,i for which

pk(x) = ck,0

(
x

k

)
+ ck,1

(
x

k − 1

)
+ · · ·+ ck,k

(
x

0

)
.
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To see this, first observe that
(
x
k

)
,

(
x

k−1

)
, · · ·,

(
x
0

)
constitute a basis for the vector space of polynomials of

degree not exceeding k. So there exist real ck,i as specified. We prove by induction on k that the ck,i must
in fact be integers. The result is trivial when k = 0. Assume its truth for k ≥ 0. Suppose that

pk+1(x) = ck+1,0

(
x

k + 1

)
+ · · ·+ ck+1,k+1

takes integer values at x = n, n + 1, · · · , n + k + 1. Then

pk+1(x + 1)− pk+1(x) = ck+1,0

(
x

k

)
+ · · ·+ ck+1,k

is a polynomial of degree k which taken integer values at n, n + 1, · · · , n + k, and so ck+1,0, · · · , ck+1,k are all
integers. Hence,

ck+1,k+1 = pk+1(n)− ck+1,0

(
n

k + 1

)
− · · · ck+1,k

(
n

1

)
is also an integer. (This is more than we need; we just need to know that the coefficients of f(x) are all
rational.)

Let f(x) be multiplied by a suitable factorial to obtain a polynomial g(x) with integer coefficients. The
set of primes dividing values of g(m) at integers m is the union of the set of primes for f and a finite set, so
it is enough to obtain the result for g. Note that g assumes the values 0 and 1 only finitely often. Suppose
that g(a) = b 6= 0 and let P = {p1, p2, · · · , pr} be a finite set of primes. Define

h(x) =
g(a + bp1p2 · · · prx)

b
.

Then h(x) has integer coefficients and h(x) ≡ 1 (mod p1p2 · · · pr). There exists an integer u for which h(u)
is divisible by a prime p, and this prime must be distinct from p1, p2, · · · , pr. The result follows.

Solution 2. Let f(x) =
∑n

k akxn. The number a0 = f(0) is rational. Indeed, each of the numbers f(0),
f(1), · · ·, f(n) is an integer; writing these conditions out yields a system of n+1 linear equations with integer
coefficients for the coefficients a0, a1, · · ·, an whose determinant is nonzero. The solution of this equation
consists of rational values. Hence all the coefficients of f(x) are rational. Multiply f(x) by the least common
multiple of its denominators to get a polynomial g(x) which takes integer values whenever x is an integer.
Suppose, if possible, that values of f(x) for integral x are divisible only by primes p from a finite set Q.
Then the same is true of g(x) for primes from a finite set P consisting of the primes in Q along with the
prime divisors of the least common multiple. For each prime p ∈ P , select a positive integer ap such that
pap does not divide g(0). Let N =

∏
{pap : p ∈ P}. Then, for each integer u, g(Nu) 6≡ 0 (mod N). However,

for all u, g(Nu) =
∏

pbp , where 0 ≤ bp ≤ ap. Since there are only finitely many numbers of this type, some
number must be assumed by g infinitely often, yielding a contradiction. (Alternatively: one could deduce
that g(Nu) ≤ N for all u and get a contradition of the fact that |g(Nu)| tends to infinity with u.)

Solution 3. [R. Barrington Leigh] Let n be the degree of f . Lemma. Let p be a prime and k a positive
integer. Then f(x) ≡ f(x + pnk) (mod pk). Proof by induction on the degree. The result holds for
n = 0. Assume that it holds for n = m− 1 and f(x) have degree m. Let g(x) = f(x)− f(x− 1), so that the
degree of g(x) is m− 1. Then

f(x + pnk)− f(x) =
pnk∑
i=1

g(x + i)

=
p(n−1)k∑

i=1

(g(x + i) + g(x + i + p(n−1)k) + . . . + g(x + i + (pk − 1)p(n−1)k)

≡
p(n−1)k∑

i=1

pkg(x + i) ≡ 0 ,
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(mod pk). [Note that this does not require the coefficients to be integers.]

Suppose, if possible, that the set P of primes p that divide at least one value of f(x) for integer x
is finite, and that, for each p ∈ P , the positive integer a is chosen so that pa does not divide f(0). Let
q =

∏
{pa : p ∈ P}. Then pa does not divide f(0), nor any of the values f(qn) for positive integer n, as

these are all congruent modulo pa. Since any prime divisor of f(qn) belongs to P , it must be that f(qn) is
a divisor of q. But this contradicts the fact that |f(qn)| becomes arbitrarily large with n.

Solution 4. [F. Barekat] Let f(x) = anxn + · · · + a0 where n ≥ 1. Substituting n + 1 integers for x
yields a system of n + 1 linear equations for a0, a1, · · ·, an which has integer coefficients. Such a system has
rational solutions, so that the coefficients of the polynomial are rational numbers. (This can also be seen by
forming the Lagrange polynomial for the n + 1 values.) Let g(x) be the product of f(x) and c, a common
multiple of all the denominators of the ai. Then g(x) has integer coefficients and takes integer values when
x is an integer.

If a0 = 0, then n|g(n) for each integer n, and there are infinitely many primes among the divisors of
the g(n) and therefore among the divisor of the f(n) (since only finitely many primes divide c), when n is
integral. Suppose that a0 6= 0, and, if possible, that g(n) is divisible only by the primes p1, p2, · · · , pk for
integer n. Let ca0 = pr1

1 pr2
2 · · · prk

k and let

M = {ps1
1 ps2

2 · · · psk

k : si > ri∀i} .

The set M has infinitely many elements.

Suppose that h(x) = (1/ca0)g(x), so that the constant coefficient of h(x) is 1. The polynomial h(x)
takes rational values when x is an integer, but only the primes p1, p2, · · · , pk are involved in the numerator
and denominator of these values written in lowest terms. In particular, for m ∈ M , h(m) is an integer
congruent to 1 modulo each pi, so that h(m) = ±1. However, this would imply that either h(x) = 1 or
h(x) = −1 infinitely often, which cannot occur for an nontrivial polynomail. Hence, there must be infinitely
many primes divisors of the values of g(n) for integral n.

Solution 5. [P. Shi] Let t be the largest positive integer for which f(n) is a multiple of t for every positive
integer n. Define g(x) = (1/t)f(x). Then g(n) takes integer values for every integer n, the greatest common
divisor of all the g(n) (n an integer) is 1, and the set of primes dividing at least one g(n) is a subset of P .

Suppose if possible that P ≡ {p1, p2, · · · , pk} is a finite set. Let 1 ≤ i ≤ k. There exists an integer mi

such that g(mi) is not a multiple of pi; since g(mi + jpi) ≡ g(mi) (mod pi), g(n) is not a multiple of pi when
n ≡ mi (mod pi).

By the Chinese Remainder Theorem, there exists infinitely many numbers n for which n ≡ mi (mod
pi) for each i. For such n, g(n) is not divisible by pi for any i. At most finitely many such g(n) are equal to
±1. Each remaining one of the g(n) must have a prime divisor distinct from the pi, yielding a contradiction.
The result follows.

379. Let n be a positive integer exceeding 1. Prove that, if a graph with 2n + 1 vertices has at least 3n + 1
edges, then the graph contains a circuit (i.e., a closed non-self-intersecting chain of edges whose terminal
point is its initial point) with an even number of edges. Prove that this statement does not hold if the
number of edges is only 3n.

Solution 1. If there are two vertices joined by two separate edges, then the two edges together constitute
a chain with two edges. If there are two vertices joined by three distinct chains of edges, then the number
of edges in two of the chains have the same parity, and these two chains together constitute a circuit with
evenly many edges. We establish the general result by induction.

When n = 2, the graph has 5 vertices at at least 7 edges. Since a graph lacking circuits has fewer edges
than vertices, there must be at least one circuit. If there is a circuit of length 5, then any additional edge
produces circuit of length 3 and 4. If there is a circuit of length 3, then one of the remaining vertices must be
joined to two of the vertices in the cicuit, creating two circuits of length 3 with a common edge. Suppressing
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this edge gives a circuit of length 4. Accordingly, one can see that there must be a circuit with an even
number of edges.

Suppose that the result holds for 2 ≤ n ≤ m− 1. We may assume that we have a graph G with 2m + 1
edges and at least 3m + 1 vertices that contains no instances where two separate edges join the same pair
of vertices and no two vertices are connected by more than two chains. Since 3m + 1 > 2m, the graph is
not a tree or union of disjoint trees, and therefore must contain at least one circuit. Consider one of these
circuits, L. If it has evenly many edges, the result holds. Suppose that it has oddly many edges, say 2k + 1
with k ≥ 1. Since any two vertices in the circuit are joined by at most two chains (the two chains that make
up the circuit), there are exactly 2k + 1 edges joining pairs of vertices in the circuit. Apart from the circuit,
there are (2m + 1)− (2k + 1) = 2(m− k) vertices and (3m + 1)− (2k + 1) = 3(m− k) + k ≥ 3(m− k) + 1
edges.

We now create a new graph G′, by coalescing all the vertices and edges of L into a single vertex v and
retaining all the other edges and vertices of G. This graph G′ contains 2(m − k) + 1 vertices and at least
3(m − k) + 1 edges, and so by the induction hypothesis, it contains a circuit M with an even number of
edges. If this circuit does not contain v, then it is a circuit in the original graph G, which thus has a circuit
with evenly many edges. If the circuit does contain v, it can be lifted to a chain in G joining two vertices of
L by a chain of edges in G′. But these two vertices of L must coincide, for otherwise there would be three
chains joining these vertices. Hence we get a circuit, all of whose edges lie in G′; this circuit has evenly many
edges. The result now follows by induction.

Here is a counterexample with 3n edges. Consider 2n + 1 vertices partitioned into a singleton and n
pairs. Join each pair with an edge and join the singleton to each of the other vertices with a single edge to
obtain a graph with 2n + 1 vertices, 3n edges whose only circuits are triangles.

Solution 2. [J. Tsimerman] For any graph H, let k(H) be the number or circuits minus the number
of components (two vertices being in the same component if and only if they are connected by a chain of
edges). Let G0 be the graph with 2n + 1 vertices and no edges. Then k(G0) = −(2n + 1). Suppose that
edges are added one at a time to obtain a succession Gi of graphs culminating in the graph G with 2n + 1
vertices and at least 3n + 1 edges. Since adding an edge either reduces the number of components (when
it connects two vertices of separate components) or increases the number of circuits (when it connects two
vertices in the same component), k(Gi+1) ≥ k(Gi)+1. Hence k(G) ≥ k(G3n+1) ≥ −(2n+1)+(3n+1) = n.
Thus, the number of circuits in G is at least equal to the number of components in G plus n, which is at
least n + 1. Thus, G has at least n + 1 circuits.

If a circuit has two edges, the result is known. If all circuits have at least three edges, then the total
number of edges of all circuits is at least 3(n + 1). Since 3(n + 1) > 3n + 1, there must be two circuits
that share an edge. Let the circuits be A and B and the endpoints of the common edge be u and v. Follow
circuit A along from u in the direction away from the adjacent vertex v, and suppose it first meets circuit
B and w (which could coincide with v). Then there are three chains connecting u and w, namely the two
complementary parts of B and a portion of A. The number of edges of two of these chains have the same
parity, and can be used to constitute a circuit with an even number of edges.

A counterexample can be obtained by taking a graph with vertices a1, · · ·, an, b0, b1, · · ·, bn, with edges
joining the vertex pairs (ai, bi−1), (ai, bi) and (bi−1, bi) for 1 ≤ i ≤ n.

380. Factor each of the following polynomials as a product of polynomials of lower degree with integer
coefficients:

(a) (x + y + z)4 − (y + z)4 − (z + x)4 − (x + y)4 + x4 + y4 + z4 ;

(b) x2(y3 − z3) + y2(z3 − x3) + z2(x3 − y3) ;

(c) x4 + y4 − z4 − 2x2y2 + 4xyz2 ;

(d) (yz + zx + xy)3 − y3z3 − z3x3 − x3y3 ;

(e) x3y3 + y3z3 + z3x3 − x4yz − xy4z − xyz4 ;
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(f) 2(x4 + y4 + z4 + w4)− (x2 + y2 + z2 + w2)2 + 8xyzw ;

(g) 6(x5 + y5 + z5)− 5(x2 + y2 + z2)(x3 + y3 + z3) .

Solution. (a) Let P1(x, y, z) be the expression to be factored. Since P1(0, y, z) = P1(x, 0, y) =
P1(x, y, 0) = 0, three factors of P1(x, y, z) are x, y and z. Hence, P1(x, y, z) = xyzQ1(x, y, z), where
Q1(x, y, z) must be linear and symmetric. Hence Q1(x, y, z) = k(x + y + z) for some constant k. Since
3k = P1(1, 1, 1) = 81− 48 + 3 = 36,

P1(x, y, z) = 12xyz(x + y + z) .

Comment. The factor x + y + z can be picked up from the Factor Theorem using the substitution
x + y + z = 0 (i.e., x + y = −z, y + z = −x, z + x = −y).

(b)

x2(y3 − z3) + y2(z3 − x3) + z2(x3 − y3)

= x2(y3 − z3) + y2(z3 − x3)− z2(z3 − x3)− z2(y3 − z3)

= (x2 − z2)(y3 − z3) + (y2 − z2)(z3 − x3)

= (x− z)(y − z)[(x + z)(y2 + yz + z2)− (y + z)(z2 + zx + x2)]

= (x− z)(y − z)[xy(y − x) + z2(x− y) + z(y2 − x2) + z2(y − x)]
= (x− z)(y − z)(y − x)[xy + z(y + x)] = (x− y)(y − z)(z − x)(xy + yz + zx) .

(c)

x4 + y4 − z4 − 2x2y2 + 4xyz2 = (x4 + 2x2y2 + y4)− (z4 + 4x2y2 − 4xyz2)

= (x2 + y2)2 − (z2 − 2xy)2 = (x2 + y2 + z2 − 2xy)(x2 + y2 − z2 + 2xy)

= (x2 + y2 + z2 − 2xy)[(x + y)2 − z2] = (x2 + y2 + z2 − 2xy)(x + y + z)(x + y − z) .

(d) Solution 1.

(yz + zx + xy)3 − y3z3 − z3x3 − x3y3

= 3(xy2z3 + xy3z2 + x2yz3 + x2y3z + x3yz2 + x3y2z + 2x2y2z2)

= 3xyz(yz2 + y2z + xz2 + xy2 + x2z + x2y + 2xyz)
= 3xyz(x + y)(y + z)(z + x) .

Solution 2. Let the polynomial be P4(x, y, z). Since P4(0, y, z) = P4(x, 0, z) = P4(x, y, 0) = P4(x,−x, 0)
= P4(0, y,−y) = P4(−z, 0, z) = 0, P4(x, y, z) contains the factors x, y, z, x + y, y + z, z + x. Hence

P4(x, y, z) = kxyz(x + y)(y + z)(z + x) .

Since 8k = P4(1, 1, 1) = 24, k = 3 and we obtain the factorization.

Solution 3. [D. Rhee]

P4(x, y, z) = [z(x + y) + xy]3 − x3y3 − y3z3 − z3x3

= z3(x + y)3 + 3z2(x + y)2xy + 3z(x + y)(xy)2 − z3(x + y)(x2 − xy + y2)

= (x + y)z[z2(x + y)2 + 3z(x + y)xy + 3(xy)2 − z2(x + y)2 + 3z2(xy)]

= 3(x + y)xyz[z(x + y) + xy + z2] = 3(x + y)xyz(x + z)(y + z) .
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(e) Let P5(x, y, z) be the polynomial to be factored. Since

x3y3 − x4yz = x3y(y2 − xz) = x2(xy)(y2 − xz) ,

y3z3 − xyz4 = yz3(y2 − xz) ,

and
z3x3 − xy4z = z3x3 − x2y2z2 + x2y2z2 − xy4z = z2x2(zx− y2) + xy2z(zx− y2) ,

it follows that

P5(x, y, z) = (y2 − zx)[x3y + yz3 − z2x2 − xy2z]

= −(y2 − zx)(z2 − xy)(x2 − yz) = (zx− y2)(xy − z2)(yz − x2) ,

(f) Let P6(x, y, z, w) be the polynomial to be factored. Any factorization of P6(x, y, z, w) will reduce to
a factorization of P6(x, y, 0, 0) when z = w = 0, so we begin by factoring this reduced polynomial:

P6(x, y, 0, 0) = 2(x4 + y4)− (x2 + y2)2 = (x2 − y2)2 = (x + y)2(x− y)2 .

Similar factorizations occur upon suppressing other pairs of variables. So we look for linear factors that
reduce to x + y and x − y when z = w = 0, etc.. Also the factors must either be symmetrical in x, y, z or
come in symmetrical groups. The possibilities, up to sign, are {x + y + z + w}, {x + y + z − w, x + y − z +
w, x− y + z + w,−x + y + z + w} and {x + y− z −w, x− y + z −w, x− y− z + w}. Since P6(x, y, z, w) has
degree 4, there are two possible factorizations:

(1) (x + y + z + w)(x + y − z − w)(x− y + z − w)(x− y − z + w)

(2) − (x + y + z − w)(x + y − z + w)(x− y + z + w)(−x + y + z + w)

Checking (1) yields

(x + y + z + w)(x + y − z − w)(x− y + z − w)(x− y − z + w)

= [(x + y)2 − (z + w)2][(x− y)2 − (z − w)2]

= [(x2 + y2 − z2 − w2) + 2(xy − zw)][(x2 + y2 − z2 − w2)− 2(xy − zw)]

= (x2 + y2 − z2 − w2)2 − 4(xy − zw)2

= x4 + y4 + z4 + w4 + 2x2y2 + 2z2w2 − 2x2z2 − 2x2w2 − 2y2z2 − 2y2w2

− 4x2y2 − 4z2w2 + 8xyzw

= x4 + y4 + z4 + w4 − 2(x2y2 + x2z2 + x2w2 + y2z2 + y2w2 + z2w2) + 8xyzw

= 2(x4 + y2 + z4 + w4)− (x2 + y2 + z2 + w2)2 + 8xyzw .

Thus, we have found the required factorization. ((2), of course, is not correct.)

(g) Let P7(x, y, z) be the polynomial to be factored.

Solution 1. Note that

P7(x, y, 0) = 6(x5 + y5)− 5(x2 + y2)(x3 + y3)

= (x + y)[6x4 − 6x3y + 6x2y2 − 6xy3 + 6y4 − 5(x2 + y2)(x2 − xy + y2)

= (x + y)(x4 − x3y − 4x2y2 − xy3 + y4)

= (x + y)[x4 − 2x2y2 + y4 − xy(x2 + 2xy + y2)]

= (x + y)[(x + y)2(x− y)2 − xy(x + y)2] = (x + y)3(x2 − 3xy + y2) .
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Similarly, (y + z)3 divides P7(0, y, z) and (x + z)3 divides Py(x, 0, z). This suggests that we try the
factorization

Q7(x, y, z) ≡ (x + y + z)3(z2 + y2 + z2 − 3xy − 3yz − 3zx) .

Since P7(1, 0, 0) = 1 = Qy(1, 0, 0) and P7(1, 1, 1) = 18 − 45 = −27 6= Q7(1, 1, 1) = 27(−6), this does not
work. So we need to look at the above factorizations differently:

P7(x, y, 0) = (x + y)2(x3 + y3 − 2x2y − 2xy2) ;

P7(x, 0, z) = (x + z)2(x3 + z3 − 2x2z − 2xz2) ;

P7(0, y, z) = (y + z)2(y3 + z3 − 2y2z − 2yz2) .

This suggests the trial:

R7(x, y, z) ≡ (x + y + z)2(x3 + y3 + z3 − 2x2y − 2xy2 − 2y2z − 2yz2 − 2z2x− 2zx2 + kxyz) .

Now P7(1, 1, 1) = −27 and R7(1, 1, 1) = 9(−9 + k), so this will not work unless k = 6. Checking, we find
that

P7(x, y, z) ≡ (x + y + z)2(x3 + y3 + z3 − 2x2y − 2xy2 − 2y2z − 2yz2 − 2z2x− 2zx2 + 6xyz) .

Solution 2. [Y. Zhao] For k = 1, 2, 3, let Sk = xk + yk + zk; let σ1 = x + y + z, σ2 = xy + yz + zx
and σ3 = xyx. Then S1 = σ1, S2 = σ1S1 − 2σ2, S3 = σ1S2 − σ2S1 + 3σ3, S4 = σ1S3 − σ2S2 + σ3S1 and
S5 = σ1S4 − σ2S3 + σ3S2, so that S2 = σ2

1 − 2σ2, S3 = σ3
1 − 3σ1σ2 + 3σ3, S4 = σ4

1 − 4σ2
1σ2 + 4σ1σ3 + 2σ2

2

and S5 = σ5
1 − 5σ3

1σ2 + 5σ2
1σ3 + 5σ1σ

2
2 − 5σ2σ3 .

P7(x, y, z) = 6S5 − 5S2S3

= 6(σ5
1 − 5σ3

1σ2 + 5σ2
1σ3 + 5σ1σ

2
2 − 5σ2σ3)− 5(σ2

1 − 2σ2)(σ3
1 − 3σ1σ2 + 3σ3)

= σ5
1 − 5σ3

1σ2 + 15σ2
1σ3 = σ2

1(σ3
1 − 5σ1σ2 + 15σ3) .
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