Solutions.

297. The point P lies on the side $B C$ of triangle $A B C$ so that $P C=2 B P, \angle A B C=45^{\circ}$ and $\angle A P C=60^{\circ}$. Determine $\angle A C B$.

Solution 1. Let D be the image of C under a reflection with axis $A P$. Then $\angle A P C=\angle A P D=$ $\angle D P B=60^{\circ}, P D=P C=2 B P$, so that $\angle D B P=90^{\circ}$. Hence $A B$ bisects the angle $D B P$, and $A P$ bisects the angle $D P C$, whence A is equidistant from $B D, P C$ and $P D$.

Thus, $A D$ bisects $\angle E D P$, where E lies on $B D$ produced. Thus

$$
\begin{aligned}
\angle A C B & =\angle A D P=\frac{1}{2} \angle E D P \\
& =\frac{1}{2}\left(180^{\circ}-\angle B D P\right)=\frac{1}{2}\left(180^{\circ}-30^{\circ}\right)=75^{\circ} .
\end{aligned}
$$

Solution 2. [Y. Zhao] Let Q be the midpoint of $P C$ and R the intersection of $A P$ and the right bisector of $P Q$, so that $P R=Q R$ and $B R=C R$. Then $\angle R P Q=\angle R Q P=60^{\circ}$ and triangle $P Q R$ is equilateral. Hence $P B=P Q=P R=R Q=Q C$ and $\angle P B R=\angle P R B=\angle Q R C=\angle Q C R=30^{\circ}$.

Also, $\angle R B A=15^{\circ}=\angle P A B=\angle R A B$, so $A R=B R=C R$. Thus, $\angle R A C=\angle R C A$. Now $\angle A R C=$ $180^{\circ}-\angle P R Q-\angle Q R C=90^{\circ}$, so that $\angle R C A=45^{\circ}$ and $\angle A C B=75^{\circ}$.

Solution 3. [R. Shapiro] Let H be the foot of the perpendicular from C to $A P$. Then $C P H$ is a $30-60-90$ triangle, so that $B P=\frac{1}{2} P C=P H$ and $\angle P B H=\angle P H B=30^{\circ}=\angle P C H$. Hence, $B H=H C$. As

$$
\angle H A B=\angle P A B=180^{\circ}-120^{\circ}-45^{\circ}=15^{\circ}=\angle A B P-\angle H B P=\angle A B H
$$

$A H=B H=H C$. Therefore, $\angle H A C=\angle H C A=45^{\circ}$. Thus, $\angle A C B=\angle H C A+\angle P C H=75^{\circ}$.
Solution 4. From the equation expressing $\tan 30^{\circ}$ in terms of $\tan 15^{\circ}$, we find that $\tan 15^{\circ}=2-\sqrt{3}$ and $\sin 15^{\circ}=\frac{\sqrt{3}-1}{2 \sqrt{2}}$. Let $\angle A C P=\theta$, so that

$$
\angle P A C=180^{\circ}-60^{\circ}-\theta=120^{\circ}-\theta .
$$

Suppose, wolog, we set $|B P|=1$, so that $|P C|=2$. Then by the Law of Sines in triangle $A B P$,

$$
|A P|=\frac{\sin 45^{\circ}}{\sin 15^{\circ}}=\sqrt{3}+1
$$

By the Law of Sines in triangle $A P C$,

$$
\frac{\sin \theta}{\sqrt{3}+1}=\frac{\sin \left(120^{\circ}-\theta\right)}{2}=\frac{\sqrt{3} \cos \theta}{4}+\frac{\sin \theta}{4}
$$

whence $(3-\sqrt{3}) \sin \theta=(3+\sqrt{3}) \cos \theta$. Hence

$$
\tan \theta=2+\sqrt{3}=(2-\sqrt{3})^{-1}=\left(\tan 15^{\circ}\right)^{-1}
$$

so that $\theta=75^{\circ}$.
298. Let O be a point in the interior of a quadrilateral of area S, and suppose that

$$
2 S=|O A|^{2}+|O B|^{2}+|O C|^{2}+|O D|^{2} .
$$

Prove that $A B C D$ is a square with centre O.

Solution.

$$
\begin{aligned}
|O A|^{2} & +|O B|^{2}+|O C|^{2}+|O D|^{2} \\
& =\frac{1}{2}\left(|O A|^{2}+|O B|^{2}\right)+\frac{1}{2}\left(|O B|^{2}+|O C|^{2}\right)+\frac{1}{2}\left(|O C|^{2}+|O D|^{2}\right)+\frac{1}{2}\left(|O D|^{2}+|O A|^{2}\right) \\
& \geq|O A||O B|+|O B||O C|+|O C||O D|+|O D||O A| \\
& \geq 2[A O B]+2[B O C]+2[C O D]+2[D O A]=2 S
\end{aligned}
$$

with equality if and only if $O A=O B=O C=O D$ and all the angles $A O B, B O C, C O D$ and $D O A$ are right. The result follows.
299. Let $\sigma(r)$ denote the sum of all the divisors of r, including r and 1 . Prove that there are infinitely many natural numbers n for which

$$
\frac{\sigma(n)}{n}>\frac{\sigma(k)}{k}
$$

whenever $1 \leq k<n$.
Solution 1. Let $u_{m}=\sigma(m) / m$ for each positive integer m. Since $d \leftrightarrow 2 d$ is a one-one correspondence between the divisors of m and some even divisor of $2 m, \sigma(2 m) \geq 2 \sigma(m)+1$, so that

$$
u_{2 m}=\frac{\sigma(2 m)}{2 m} \geq \frac{2 \sigma(m)+1}{2 m}>\frac{\sigma(m)}{m}=u_{m}
$$

for each positive integer m.
Let r be a given positive integer, and select $s \leq 2^{r}$ such that $u_{s} \geq u_{k}$ for $1 \leq k \leq 2^{r}$ (i.e., u_{s} is the largest value of u_{k} for k up to and including 2^{r}). Then, as $u_{2 s}>u_{s}$, it must happen that $2^{r} \leq 2 s \leq 2^{r+1}$ and $u_{2 s} \geq u_{k}$ for $1 \leq k \leq 2^{r}$.

Suppose that n is the smallest positive integer t for which $2^{r} \leq t$ and $u_{k} \leq u_{t}$ for $1 \leq k \leq 2^{r}$. Then $2^{r} \leq n \leq 2 s \leq 2^{r+1}$. Suppose that $1 \leq k \leq n$. If $1 \leq k \leq 2^{r}$, then $u_{k} \leq u_{n}$ from the definition of n. If $2^{r}<k<n$, then there must be some number k^{\prime} not exceeding 2^{r} for which $u_{k}<u_{k^{\prime}} \leq u_{n}$. Thus, n has the desired property and $2^{r} \leq n \leq 2^{r+1}$. Since such n can be found for each positive exponent r, the result follows.

Comment. The sequence selected in this way starts off: $\{1,2,4,6,12, \cdots\}$.
Solution 2. [P. Shi] Define u_{m} as in Solution 1. Suppose, if possible, that there are only finitely many numbers n satisfying the condition of the problem. Let N be the largest of these, and let u_{s} be the largest value of u_{m} for $1 \leq m \leq N$. We prove by induction that $u_{n} \leq u_{s}$ for every positive integer n. This holds for $n \leq N$. Suppose that $n>N$. Then, there exists an integer $r<n$ for which $u_{r}>u_{n}$. By the induction hypothesis, $u_{r} \leq u_{s}$, so that $u_{n}<u_{s}$. But this contradicts the fact (as established in Solution 1) that $u_{2 s}>u_{s}$.
300. Suppose that $A B C$ is a right triangle with $\angle B<\angle C<\angle A=90^{\circ}$, and let \mathcal{K} be its circumcircle. Suppose that the tangent to \mathcal{K} at A meets $B C$ produced at D and that E is the reflection of A in the axis $B C$. Let X be the foot of the perpendicular from A to $B E$ and Y the midpoint of $A X$. Suppose that $B Y$ meets \mathcal{K} again in Z. Prove that $B D$ is tangent to the circumcircle of triangle $A D Z$.

Solution 1. Let $A Z$ and $B D$ intersect at M, and $A E$ and $B C$ intersect at P. Since $P Y$ joints the midpoints of two sides of triangle $A E X, P Y \| E X$. Since $\angle A P Y=\angle A E B=\angle A Z B=\angle A Z Y$, the quadrilateral $A Z P Y$ is concyclic. Since $\angle A Y P=\angle A X E=90^{\circ}, A P$ is a diameter of the circumcircle of $A Z P Y$ and $B D$ is a tangent to this circle. Hence $M P^{2}=M Z \cdot M A$. Since

$$
\angle P A D=\angle E A D=\angle E B A=\angle X B A
$$

triangles $P A D$ and $X B A$ are similar. Since

$$
\angle M A D=\angle Z A D=\angle Z B A=\angle Y B A
$$

it follows that

$$
\angle P A M=\angle P A D-\angle M A D=\angle X B A-\angle Y B A=\angle X B Y
$$

so that triangles $P A M$ and $X B Y$ are similar. Thus

$$
\frac{P M}{A P}=\frac{X Y}{X B}=\frac{X A}{2 X B}=\frac{P D}{2 P A} \Longrightarrow P D=2 P M \Longrightarrow M D=P M
$$

Hence $M D^{2}=M P^{2}=M Z \cdot M A$ and the desired result follows.
Solution 2. [Y. Zhao] As in Solution 1, we see that there is a circle through the vertices of $A Z P Y$ and that $B D$ is tangent to this circle. Let O be the centre of the circle \mathcal{K}. The triangles $O P A$ and $O A D$ are similar, whereupon $O P \cdot O D=O A^{2}$. The inversion in the circle \mathcal{K} interchanges P and D, carries the line $B D$ to itself and takes the circumcircle of triangle $A Z P$ to the circumcircle of triangle $A Z D$. As the inversion preserves tangency of circles and lines, the desired result follows.
301. Let $d=1,2,3$. Suppose that M_{d} consists of the positive integers that cannot be expressed as the sum of two or more consecutive terms of an arithmetic progression consisting of positive integers with common difference d. Prove that, if $c \in M_{3}$, then there exist integers $a \in M_{1}$ and $b \in M_{2}$ for which $c=a b$.

Solution. M_{1} consists of all the powers of 2 , and M_{2} consists of 1 and all the primes. We prove these assertions.

Since $k+(k+1)=2 k+1$, every odd integer exceeding 1 is the sum of two consecutive terms. Indeed, for each positive integers m and r,

$$
(m-r)+(m-r+1)+\cdots+(m-1)+m+(m+1)+\cdots+(m+r-1)+(m+r)=(2 r+1) m
$$

and,

$$
m+(m+1)+\cdots+(m+2 r-1)=r[2(m+r)-1]
$$

so that it can be deduced that every positive integer with at least one odd positive divisor exceeding 1 is the sum of consecutives, and no power of 2 can be so expressed. (If $m<r$ in the first sum, the negative terms in the sum are cancelled by positive ones.) Thus, M_{1} consists solely of all the powers of 2 .

Since $2 n=(n+1)+(n-1), M_{2}$ excludes all even numbers exceeding 2 . Let $k \geq 2$ and $m \geq 1$. Then

$$
m+(m+2)+\cdots+(m+2(k-1))=k m+k(k-1)=k(m+k-1)
$$

so that M_{2} excludes all multiples of k from k^{2} on. Since all such numbers are composite, M_{2} must include all primes. Since each composite number is at least as large as the square of its smallest nontrivial divisor, each composite number must be excluded from M_{2}.

We now examine M_{3}. The result will be established if we show that M_{3} does not contain any number of the form $2^{r} u v$ where r is a nonnegative integer and u, v are odd integers with $u \geq v>1$. Suppose first that $r \geq 1$ and let $a=2^{r} u-\frac{3}{2}(v-1)$. Then

$$
a \geq 2 u-\frac{3}{2}(v-1) \geq \frac{v}{2}+1>1
$$

and

$$
a+(a+3)+\cdots+[a+3(v-1)]=v[a+(3 / 2)(v-1)]=2^{r} u v
$$

Since $m+(m+3)=2 m+3$, we see that M_{3} excludes all odd numbers exceeding 3 , and hence all odd composite numbers. Hence, every number in M_{3} must be the product of a power of 2 and an odd prime or 1.

Comment. The solution provides more than necessary. It suffices to show only that M_{1} contains all powers of $2, M_{2}$ contains all primes and M_{3} excludes all numbers with a composite odd divisor.
302. In the following, $A B C D$ is an arbitrary convex quadrilateral. The notation [\cdots] refers to the area.
(a) Prove that $A B C D$ is a trapezoid if and only if

$$
[A B C] \cdot[A C D]=[A B D] \cdot[B C D]
$$

(b) Suppose that F is an interior point of the quadrilateral $A B C D$ such that $A B C F$ is a parallelogram. Prove that

$$
[A B C] \cdot[A C D]+[A F D] \cdot[F C D]=[A B D] \cdot[B C D]
$$

Solution 1. (a) Suppose that $A B$ is not parallel to $C D$. Wolog, let these lines meet at E with A between E and B, and D between E and C. Let P, Q, R, S be the respective feet of the perpendiculars from A to $C D, B$ to $C D, C$ to $A B, D$ to $A B$ produced. Then

$$
[A B C] \cdot[A C D]=[A B D][B C D] \Leftrightarrow|A B\|C R\| C D\|A P|=|A B\|D S\| C D \| B Q| \Leftrightarrow C R: D S=B Q: A P
$$

By similar triangles, we find that $C E: D E=C R: D S=B Q: A P=B E: A E$. The dilation with centre E and factor $|A E| /|B E|$ takes B to A, C to D and so the segment $B C$ to the parallel segment $A D$. Thus $A B C D$ is a trapezoid.
(b) Let the quadrilateral be in the horizontal plane of three-dimensional space and let F be at the origin of vectors. Suppose that $\mathbf{u}=\overrightarrow{F A}, \mathbf{v}=\overrightarrow{F C}$, and $-p \mathbf{u}-q \mathbf{v}=\overrightarrow{F D}$, where p and q are nonnegative scalars. We have that $\overrightarrow{F B}=\mathbf{u}+\mathbf{v}$. Then

$$
\begin{gathered}
2[A B C]=|\mathbf{u} \times \mathbf{v}| ; \\
2[A C D]=2([F A C]+[F A D]+[F C D]) \\
=|\mathbf{u} \times \mathbf{v}|+|\mathbf{u} \times(p \mathbf{u}+q \mathbf{v})|+|\mathbf{v} \times(p \mathbf{u}+q \mathbf{v})| \\
=(1+q+p)|\mathbf{u} \times \mathbf{v}| ; \\
2[F C D]=p|\mathbf{u} \times \mathbf{v}| ; \\
2[A F D]=q|\mathbf{u} \times \mathbf{v}| ; \\
2[A B D]=|(p \mathbf{u}+q \mathbf{v}+\mathbf{u}) \times \mathbf{v}|=(1+p)|\mathbf{u} \times \mathbf{v}| ; \\
2[B C D]=|(p \mathbf{u}+q \mathbf{v}+\mathbf{v}) \times \mathbf{u}|=(1+q)|\mathbf{u} \times \mathbf{v}| \mid
\end{gathered}
$$

The result follows.
Solution 2. [Y. Zhao] Observe that, since $(A+C)+(B+D)=360^{\circ}$,

$$
\begin{aligned}
\sin A \sin C-\sin B \sin D & =\frac{1}{2}[\cos (A-C)-\cos (A+C)-\cos (B-D)+\cos (B+D)] \\
& =\frac{1}{2}[\cos (A-C)-\cos (B-D)]=\frac{1}{2}[\cos (B+A-B-C)-\cos (B+A+B+C)] \\
& =\sin (B+A) \sin (B+C)
\end{aligned}
$$

(a) Hence

$$
\begin{aligned}
4[A B D][B C D] & -4[A B C][A C D]=(A B \cdot D A \sin A)(B C \cdot C D \sin C)-(A B \cdot B C \sin B)(C D \cdot D A \sin D) \\
& =(A B \cdot B C \cdot C D \cdot D A)(\sin A \sin C-\sin B \sin D) \\
& =(A B \cdot B C \cdot C D \cdot D A) \sin (B+A) \sin (B+C)
\end{aligned}
$$

The left side vanishes if and only if $A+B=C+D=180^{\circ}$ or $B+C=A+D=180^{\circ}$, i.e., $A D \| B C$ or $A B \| C D$.
(b) From (a), we have that

$$
\begin{aligned}
4[A B D][B C D] & -4[A B C][A C D]=(A B \cdot B C \cdot C D \cdot D A) \sin (A+B) \sin (B+C) \\
& =(A B \cdot B C \cdot C D \cdot D A) \sin \left(A+B-180^{\circ}\right) \sin \left(B+C-180^{\circ}\right) \\
& =(F C \cdot A F \cdot C D \cdot D A)(\sin (\angle B A D-\angle B A F) \sin (\angle B C D-\angle B C F)) \\
& =[(D A \cdot A F) \sin \angle D A F][(D C \cdot C F) \sin \angle D C F] \\
& =4[A F D][F C D]
\end{aligned}
$$

as desired.
303. Solve the equation

$$
\tan ^{2} 2 x=2 \tan 2 x \tan 3 x+1
$$

Solution 1. Let $u=\tan x$ and $v=\tan 2 x$. Then

$$
\begin{gathered}
v^{2}-2 v\left(\frac{u+v}{1-u v}\right)-1=0 \\
\Longleftrightarrow v^{2}-u v^{3}-2 u v-2 v^{2}-1+u v=0 \\
\Longleftrightarrow 0=u v+1+v^{2}+u v^{3}=(u v+1)\left(1+v^{2}\right) \\
\Longleftrightarrow u v=-1
\end{gathered}
$$

Now $v=2 u\left(1-u^{2}\right)^{-1}$, so that $2 u=v-u^{2} v=u+v$ and $u=v$. But then $u^{2}=-1$ which is impossible. Hence the equation has no solution.

Solution 2.

$$
\begin{aligned}
0 & =\tan ^{2} 2 x-2 \tan 3 x \tan 2 x-1 \\
& =\tan ^{2} 2 x-2 \tan 3 x \tan 2 x+\tan ^{2} 3 x-\sec ^{2} 3 x \\
& =(\tan 2 x-\tan 3 x)^{2}-\sec ^{2} 3 x \\
& =(\tan 2 x-\tan 3 x-\sec 3 x)(\tan 2 x-\tan 3 x+\sec 3 x)
\end{aligned}
$$

Hence, either $\tan 2 x=\tan 3 x+\sec 3 x$ or $\tan 2 x=\tan 3 x-\sec 3 x$. Suppose that the former holds. Multiplying the equation by $\cos 2 x \cos 3 x$ yields $\sin 2 x \cos 3 x=\sin 3 x \cos 2 x+\cos 2 x$. Hence

$$
\begin{aligned}
0 & =\cos 2 x+(\sin 3 x \cos 2 x-\sin 2 x \cos 3 x) \\
& =1-2 \sin ^{2} x+\sin x=(1-\sin x)(1+2 \sin x)
\end{aligned}
$$

whence

$$
x \equiv \frac{\pi}{2},-\frac{\pi}{6}, \frac{7 \pi}{6}
$$

modulo 2π. But $\tan 3 x$ is not defined at any of these angles, so the equation fails. Similarly, in the second case, we obtain $0=(2 \sin x-1)(\sin x+1)$ so that

$$
x \equiv \frac{-\pi}{2}, \frac{\pi}{6}, \frac{5 \pi}{6}
$$

modulo 2π, and the equation again fails. Thus, there are no solutions.
Solution 3. Let $t=\tan x$, so that $\tan 2 x=2 t\left(1-t^{2}\right)^{-1}$ and $\tan 3 x=\left(3 t-t^{3}\right)\left(1-3 t^{2}\right)^{-1}$. Substituting for t in the equation and clearing fractions leads to

$$
4 t^{2}\left(1-3 t^{2}\right)=4 t\left(3 t-t^{3}\right)\left(1-t^{2}\right)+\left(1-t^{2}\right)^{2}\left(1-3 t^{2}\right)
$$

$$
\begin{gathered}
\Leftrightarrow 4 t^{2}-12 t^{4}=\left(12 t^{2}-16 t^{4}+4 t^{6}\right)+\left(1-5 t^{2}+7 t^{4}-3 t^{6}\right) \\
\Leftrightarrow 0=t^{6}+3 t^{4}+3 t^{2}+1=\left(t^{2}+1\right)^{3}
\end{gathered}
$$

There are no real solutions to the equation.
Solution 4. The equation is undefined if $2 x$ or $3 x$ is an odd multiple of $\pi / 2$. We exclude this case. Then the equation is equivalent to

$$
\frac{\sin ^{2} 2 x-\cos ^{2} 2 x}{\cos ^{2} 2 x}=\frac{2 \sin 2 x \sin 3 x}{\cos 2 x \cos 3 x}
$$

or

$$
\begin{aligned}
0 & =\frac{2 \sin 2 x \sin 3 x}{\cos 2 x \cos 3 x}+\frac{\cos 4 x}{\cos ^{2} 2 x} \\
& =\frac{\sin 4 x \sin 3 x+\cos 4 x \cos 3 x}{\cos ^{2} 2 x \cos 3 x} \\
& =\frac{\cos x}{\cos ^{2} 2 x \cos 3 x}
\end{aligned}
$$

Since $\cos x$ vanishes only if x is an odd multiple of π, we see that the equation has no solution.
Solution 5. [Y. Zhao] Observe that, when $\tan (A-B) \neq 0$,

$$
1+\tan A \tan B=\frac{\tan A-\tan B}{\tan (A-B)}
$$

In particular,

$$
1+\tan x \tan 2 x=\frac{\tan 2 x-\tan x}{\tan x} \text { and } 1+\tan 2 x \tan 3 x=\frac{\tan 3 x-\tan 2 x}{\tan x} .
$$

There is no solution when $x \equiv 0(\bmod \pi)$, so we exclude this possibility. Thus

$$
\begin{aligned}
0 & =(1+\tan 2 x \tan 3 x)+\left(\tan 2 x \tan 3 x-\tan ^{2} 2 x\right) \\
& =(\tan 3 x-\tan 2 x)(\cot x+\tan 2 x)=\cot x(\tan 3 x-\tan 2 x)(1+\tan x \tan 2 x) \\
& =\cot ^{2} x(\tan 3 x-\tan 2 x)(\tan 2 x-\tan x) \\
& =\cot ^{2} x\left(\frac{\sin x}{\cos 2 x \cos 3 x}\right)\left(\frac{\sin x}{\cos x \cos 2 x}\right)
\end{aligned}
$$

This has no solution.
Solution 6. For a solution, neither $2 x$ nor $3 x$ can be a multiple of $\pi / 2$, so we exclude these cases. Since

$$
\tan 4 x=\frac{2 \tan 2 x}{1-\tan ^{2} 2 x}
$$

we find that

$$
\cot 4 x=\frac{1-\tan ^{2} 2 x}{2 \tan 2 x}=-\tan 3 x
$$

whence $1+\tan 3 x \tan 4 x=0$. Now

$$
\tan 4 x-\tan 3 x=(1+\tan 3 x \tan 4 x) \tan x=0
$$

so that $4 x \equiv 3 x(\bmod \pi)$. But we have excluded this. Hence there is no solution to the equation.

