
Solutions.

297. The point P lies on the side BC of triangle ABC so that PC = 2BP , 6 ABC = 45◦ and 6 APC = 60◦.
Determine 6 ACB.

Solution 1. Let D be the image of C under a reflection with axis AP . Then 6 APC = 6 APD =
6 DPB = 60◦, PD = PC = 2BP , so that 6 DBP = 90◦. Hence AB bisects the angle DBP , and AP bisects
the angle DPC, whence A is equidistant from BD, PC and PD.

Thus, AD bisects 6 EDP , where E lies on BD produced. Thus

6 ACB = 6 ADP =
1
2
6 EDP

=
1
2
(180◦ − 6 BDP ) =

1
2
(180◦ − 30◦) = 75◦ .

Solution 2. [Y. Zhao] Let Q be the midpoint of PC and R the intersection of AP and the right bisector
of PQ, so that PR = QR and BR = CR. Then 6 RPQ = 6 RQP = 60◦ and triangle PQR is equilateral.
Hence PB = PQ = PR = RQ = QC and 6 PBR = 6 PRB = 6 QRC = 6 QCR = 30◦.

Also, 6 RBA = 15◦ = 6 PAB = 6 RAB, so AR = BR = CR. Thus, 6 RAC = 6 RCA. Now 6 ARC =
180◦ − 6 PRQ− 6 QRC = 90◦, so that 6 RCA = 45◦ and 6 ACB = 75◦.

Solution 3. [R. Shapiro] Let H be the foot of the perpendicular from C to AP . Then CPH is a
30− 60− 90 triangle, so that BP = 1

2PC = PH and 6 PBH = 6 PHB = 30◦ = 6 PCH. Hence, BH = HC.
As

6 HAB = 6 PAB = 180◦ − 120◦ − 45◦ = 15◦ = 6 ABP − 6 HBP = 6 ABH ,

AH = BH = HC. Therefore, 6 HAC = 6 HCA = 45◦. Thus, 6 ACB = 6 HCA + 6 PCH = 75◦.

Solution 4. From the equation expressing tan 30◦ in terms of tan 15◦, we find that tan 15◦ = 2−
√

3 and
sin 15◦ =

√
3−1

2
√

2
. Let 6 ACP = θ, so that

6 PAC = 180◦ − 60◦ − θ = 120◦ − θ .

Suppose, wolog, we set |BP | = 1, so that |PC| = 2. Then by the Law of Sines in triangle ABP ,

|AP | = sin 45◦

sin 15◦
=
√

3 + 1.

By the Law of Sines in triangle APC,

sin θ√
3 + 1

=
sin(120◦ − θ)

2
=
√

3 cos θ

4
+

sin θ

4

whence (3−
√

3) sin θ = (3 +
√

3) cos θ. Hence

tan θ = 2 +
√

3 = (2−
√

3)−1 = (tan 15◦)−1 ,

so that θ = 75◦.

298. Let O be a point in the interior of a quadrilateral of area S, and suppose that

2S = |OA|2 + |OB|2 + |OC|2 + |OD|2 .

Prove that ABCD is a square with centre O.
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Solution.

|OA|2 + |OB|2 + |OC|2 + |OD|2

=
1
2
(|OA|2 + |OB|2) +

1
2
(|OB|2 + |OC|2) +

1
2
(|OC|2 + |OD|2) +

1
2
(|OD|2 + |OA|2)

≥ |OA||OB|+ |OB||OC|+ |OC||OD|+ |OD||OA|
≥ 2[AOB] + 2[BOC] + 2[COD] + 2[DOA] = 2S

with equality if and only if OA = OB = OC = OD and all the angles AOB, BOC, COD and DOA are
right. The result follows.

299. Let σ(r) denote the sum of all the divisors of r, including r and 1. Prove that there are infinitely many
natural numbers n for which

σ(n)
n

>
σ(k)

k

whenever 1 ≤ k < n.

Solution 1. Let um = σ(m)/m for each positive integer m. Since d ↔ 2d is a one-one correspondence
between the divisors of m and some even divisor of 2m, σ(2m) ≥ 2σ(m) + 1, so that

u2m =
σ(2m)

2m
≥ 2σ(m) + 1

2m
>

σ(m)
m

= um

for each positive integer m.

Let r be a given positive integer, and select s ≤ 2r such that us ≥ uk for 1 ≤ k ≤ 2r (i.e., us is the
largest value of uk for k up to and including 2r). Then, as u2s > us, it must happen that 2r ≤ 2s ≤ 2r+1

and u2s ≥ uk for 1 ≤ k ≤ 2r.

Suppose that n is the smallest positive integer t for which 2r ≤ t and uk ≤ ut for 1 ≤ k ≤ 2r. Then
2r ≤ n ≤ 2s ≤ 2r+1. Suppose that 1 ≤ k ≤ n. If 1 ≤ k ≤ 2r, then uk ≤ un from the definition of n. If
2r < k < n, then there must be some number k′ not exceeding 2r for which uk < uk′ ≤ un. Thus, n has
the desired property and 2r ≤ n ≤ 2r+1. Since such n can be found for each positive exponent r, the result
follows.

Comment. The sequence selected in this way starts off: {1, 2, 4, 6, 12, · · ·}.

Solution 2. [P. Shi] Define um as in Solution 1. Suppose, if possible, that there are only finitely many
numbers n satisfying the condition of the problem. Let N be the largest of these, and let us be the largest
value of um for 1 ≤ m ≤ N . We prove by induction that un ≤ us for every positive integer n. This holds
for n ≤ N . Suppose that n > N . Then, there exists an integer r < n for which ur > un. By the induction
hypothesis, ur ≤ us, so that un < us. But this contradicts the fact (as established in Solution 1) that
u2s > us.

300. Suppose that ABC is a right triangle with 6 B < 6 C < 6 A = 90◦, and let K be its circumcircle. Suppose
that the tangent to K at A meets BC produced at D and that E is the reflection of A in the axis BC.
Let X be the foot of the perpendicular from A to BE and Y the midpoint of AX. Suppose that BY
meets K again in Z. Prove that BD is tangent to the circumcircle of triangle ADZ.

Solution 1. Let AZ and BD intersect at M , and AE and BC intersect at P . Since PY joints the mid-
points of two sides of triangle AEX, PY ‖EX. Since 6 APY = 6 AEB = 6 AZB = 6 AZY , the quadrilateral
AZPY is concyclic. Since 6 AY P = 6 AXE = 90◦, AP is a diameter of the circumcircle of AZPY and BD
is a tangent to this circle. Hence MP 2 = MZ ·MA. Since

6 PAD = 6 EAD = 6 EBA = 6 XBA,
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triangles PAD and XBA are similar. Since

6 MAD = 6 ZAD = 6 ZBA = 6 Y BA,

it follows that
6 PAM = 6 PAD − 6 MAD = 6 XBA− 6 Y BA = 6 XBY

so that triangles PAM and XBY are similar. Thus

PM

AP
=

XY

XB
=

XA

2XB
=

PD

2PA
=⇒ PD = 2PM =⇒ MD = PM .

Hence MD2 = MP 2 = MZ ·MA and the desired result follows.

Solution 2. [Y. Zhao] As in Solution 1, we see that there is a circle through the vertices of AZPY and
that BD is tangent to this circle. Let O be the centre of the circle K. The triangles OPA and OAD are
similar, whereupon OP ·OD = OA2. The inversion in the circle K interchanges P and D, carries the line BD
to itself and takes the circumcircle of triangle AZP to the circumcircle of triangle AZD. As the inversion
preserves tangency of circles and lines, the desired result follows.

301. Let d = 1, 2, 3. Suppose that Md consists of the positive integers that cannot be expressed as the sum of
two or more consecutive terms of an arithmetic progression consisting of positive integers with common
difference d. Prove that, if c ∈ M3, then there exist integers a ∈ M1 and b ∈ M2 for which c = ab.

Solution. M1 consists of all the powers of 2, and M2 consists of 1 and all the primes. We prove these
assertions.

Since k + (k + 1) = 2k + 1, every odd integer exceeding 1 is the sum of two consecutive terms. Indeed,
for each positive integers m and r,

(m− r) + (m− r + 1) + · · ·+ (m− 1) + m + (m + 1) + · · ·+ (m + r − 1) + (m + r) = (2r + 1)m ,

and,
m + (m + 1) + · · ·+ (m + 2r − 1) = r[2(m + r)− 1] ,

so that it can be deduced that every positive integer with at least one odd positive divisor exceeding 1 is the
sum of consecutives, and no power of 2 can be so expressed. (If m < r in the first sum, the negative terms
in the sum are cancelled by positive ones.) Thus, M1 consists solely of all the powers of 2.

Since 2n = (n + 1) + (n− 1), M2 excludes all even numbers exceeding 2. Let k ≥ 2 and m ≥ 1. Then

m + (m + 2) + · · ·+ (m + 2(k − 1)) = km + k(k − 1) = k(m + k − 1)

so that M2 excludes all multiples of k from k2 on. Since all such numbers are composite, M2 must include
all primes. Since each composite number is at least as large as the square of its smallest nontrivial divisor,
each composite number must be excluded from M2.

We now examine M3. The result will be established if we show that M3 does not contain any number
of the form 2ruv where r is a nonnegative integer and u, v are odd integers with u ≥ v > 1. Suppose first
that r ≥ 1 and let a = 2ru− 3

2 (v − 1). Then

a ≥ 2u− 3
2
(v − 1) ≥ v

2
+ 1 > 1

and
a + (a + 3) + · · ·+ [a + 3(v − 1)] = v[a + (3/2)(v − 1)] = 2ruv .
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Since m + (m + 3) = 2m + 3, we see that M3 excludes all odd numbers exceeding 3, and hence all odd
composite numbers. Hence, every number in M3 must be the product of a power of 2 and an odd prime or
1.

Comment. The solution provides more than necessary. It suffices to show only that M1 contains all
powers of 2, M2 contains all primes and M3 excludes all numbers with a composite odd divisor.

302. In the following, ABCD is an arbitrary convex quadrilateral. The notation [· · ·] refers to the area.

(a) Prove that ABCD is a trapezoid if and only if

[ABC] · [ACD] = [ABD] · [BCD] .

(b) Suppose that F is an interior point of the quadrilateral ABCD such that ABCF is a parallelogram.
Prove that

[ABC] · [ACD] + [AFD] · [FCD] = [ABD] · [BCD] .

Solution 1. (a) Suppose that AB is not parallel to CD. Wolog, let these lines meet at E with A between
E and B, and D between E and C. Let P,Q,R, S be the respective feet of the perpendiculars from A to
CD, B to CD, C to AB, D to AB produced. Then

[ABC] · [ACD] = [ABD][BCD] ⇔ |AB||CR||CD||AP | = |AB||DS||CD||BQ| ⇔ CR : DS = BQ : AP .

By similar triangles, we find that CE : DE = CR : DS = BQ : AP = BE : AE. The dilation with centre
E and factor |AE|/|BE| takes B to A, C to D and so the segment BC to the parallel segment AD. Thus
ABCD is a trapezoid.

(b) Let the quadrilateral be in the horizontal plane of three-dimensional space and let F be at the origin
of vectors. Suppose that u = −→

FA, v = −−→
FC, and −pu − qv = −−→

FD, where p and q are nonnegative scalars.
We have that −−→FB = u + v. Then

2[ABC] = |u× v| ;

2[ACD] =2([FAC] + [FAD] + [FCD])
= |u× v|+ |u× (pu + qv)|+ |v × (pu + qv)|
= (1 + q + p)|u× v| ;

2[FCD] = p|u× v| ;

2[AFD] = q|u× v| ;

2[ABD] = |(pu + qv + u)× v| = (1 + p)|u× v| ;

2[BCD] = |(pu + qv + v)× u| = (1 + q)|u× v|| .

The result follows.

Solution 2. [Y. Zhao] Observe that, since (A + C) + (B + D) = 360◦,

sinA sinC − sinB sinD =
1
2
[cos(A− C)− cos(A + C)− cos(B −D) + cos(B + D)]

=
1
2
[cos(A− C)− cos(B −D)] =

1
2
[cos(B + A−B − C)− cos(B + A + B + C)]

= sin(B + A) sin(B + C) .

(a) Hence

4[ABD][BCD]− 4[ABC][ACD] = (AB ·DA sinA)(BC · CD sinC)− (AB ·BC sinB)(CD ·DA sinD)
= (AB ·BC · CD ·DA)(sinA sinC − sinB sinD)
= (AB ·BC · CD ·DA) sin(B + A) sin(B + C) .
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The left side vanishes if and only if A + B = C + D = 180◦ or B + C = A + D = 180◦, i.e., AD‖BC or
AB‖CD.

(b) From (a), we have that

4[ABD][BCD]− 4[ABC][ACD] = (AB ·BC · CD ·DA) sin(A + B) sin(B + C)
= (AB ·BC · CD ·DA) sin(A + B − 180◦) sin(B + C − 180◦)
= (FC ·AF · CD ·DA)(sin( 6 BAD − 6 BAF ) sin( 6 BCD − 6 BCF ))
= [(DA ·AF ) sin 6 DAF ][(DC · CF ) sin 6 DCF ]
= 4[AFD][FCD] ,

as desired.

303. Solve the equation
tan2 2x = 2 tan 2x tan 3x + 1 .

Solution 1. Let u = tan x and v = tan 2x. Then

v2 − 2v

(
u + v

1− uv

)
− 1 = 0

⇐⇒ v2 − uv3 − 2uv − 2v2 − 1 + uv = 0

⇐⇒ 0 = uv + 1 + v2 + uv3 = (uv + 1)(1 + v2)

⇐⇒ uv = −1 .

Now v = 2u(1 − u2)−1, so that 2u = v − u2v = u + v and u = v. But then u2 = −1 which is impossible.
Hence the equation has no solution.

Solution 2.
0 = tan2 2x− 2 tan 3x tan 2x− 1

= tan2 2x− 2 tan 3x tan 2x + tan2 3x− sec2 3x

= (tan 2x− tan 3x)2 − sec2 3x

= (tan 2x− tan 3x− sec 3x)(tan 2x− tan 3x + sec 3x) .

Hence, either tan 2x = tan 3x+sec 3x or tan 2x = tan 3x−sec 3x. Suppose that the former holds. Multiplying
the equation by cos 2x cos 3x yields sin 2x cos 3x = sin 3x cos 2x + cos 2x. Hence

0 = cos 2x + (sin 3x cos 2x− sin 2x cos 3x)

= 1− 2 sin2 x + sinx = (1− sinx)(1 + 2 sinx) ,

whence
x ≡ π

2
,−π

6
,
7π

6
modulo 2π. But tan 3x is not defined at any of these angles, so the equation fails. Similarly, in the second
case, we obtain 0 = (2 sinx− 1)(sinx + 1) so that

x ≡ −π

2
,
π

6
,
5π

6

modulo 2π, and the equation again fails. Thus, there are no solutions.

Solution 3. Let t = tan x, so that tan 2x = 2t(1− t2)−1 and tan 3x = (3t− t3)(1− 3t2)−1. Substituting
for t in the equation and clearing fractions leads to

4t2(1− 3t2) = 4t(3t− t3)(1− t2) + (1− t2)2(1− 3t2)
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⇔ 4t2 − 12t4 = (12t2 − 16t4 + 4t6) + (1− 5t2 + 7t4 − 3t6)

⇔ 0 = t6 + 3t4 + 3t2 + 1 = (t2 + 1)3 .

There are no real solutions to the equation.

Solution 4. The equation is undefined if 2x or 3x is an odd multiple of π/2. We exclude this case. Then
the equation is equivalent to

sin2 2x− cos2 2x

cos2 2x
=

2 sin 2x sin 3x

cos 2x cos 3x
or

0 =
2 sin 2x sin 3x

cos 2x cos 3x
+

cos 4x

cos2 2x

=
sin 4x sin 3x + cos 4x cos 3x

cos2 2x cos 3x

=
cos x

cos2 2x cos 3x
.

Since cos x vanishes only if x is an odd multiple of π, we see that the equation has no solution.

Solution 5. [Y. Zhao] Observe that, when tan(A−B) 6= 0,

1 + tanA tanB =
tanA− tanB

tan(A−B)
.

In particular,

1 + tanx tan 2x =
tan 2x− tanx

tanx
and 1 + tan 2x tan 3x =

tan 3x− tan 2x

tanx
.

There is no solution when x ≡ 0 (mod π), so we exclude this possibility. Thus

0 = (1 + tan 2x tan 3x) + (tan 2x tan 3x− tan2 2x)
= (tan 3x− tan 2x)(cot x + tan 2x) = cotx(tan 3x− tan 2x)(1 + tanx tan 2x)

= cot2 x(tan 3x− tan 2x)(tan 2x− tanx)

= cot2 x

(
sinx

cos 2x cos 3x

)(
sinx

cos x cos 2x

)
.

This has no solution.

Solution 6. For a solution, neither 2x nor 3x can be a multiple of π/2, so we exclude these cases. Since

tan 4x =
2 tan 2x

1− tan2 2x
,

we find that

cot 4x =
1− tan2 2x

2 tan 2x
= − tan 3x ,

whence 1 + tan 3x tan 4x = 0. Now

tan 4x− tan 3x = (1 + tan 3x tan 4x) tan x = 0 ,

so that 4x ≡ 3x (mod π). But we have excluded this. Hence there is no solution to the equation.
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