
Solutions

213. Suppose that each side and each diagonal of a regular hexagon A1A2A3A4A5A6 is coloured either red
or blue, and that no triangle AiAjAk has all of its sides coloured blue. For each k = 1, 2, · · · , 6, let rk

be the number of segments AkAj (j 6= k) coloured red. Prove that

6∑
k=1

(2rk − 7)2 ≤ 54 .

Solution 1. Suppose, say, r1 = 0. Since every edge emanating from A1 is blue, every other edge is red,
so that r2 = r3 = r4 = r5 = r6 = 4 and

∑6
k=1(2rk − 7)2 = 72 + 5× 12 = 54.

Suppose, that every vertex is adjacent to at least one red edge, that, say, r1 = 1 and that A1A2 is red.
Then each of A3, A4, A5, A6 must be joined to each of the others by a red segment, so that r3, r4, r5 and r6

are at least equal to 3. Since all of them are joined to A1 be a blue segment, r3, r4, r5 and r6 are at most
equal to 4. Thus, (2rk − 7)2 = 1 for 3 ≤ k ≤ 6. Since 1 ≤ rk ≤ 5,

∑6
k=1(2rk − 7)2 ≤ 2× 52 + 4× 12 = 54.

Suppose that rk ≥ 2 for each k. Then 2 ≤ rk ≤ 5, so that (2rk − 7)2 ≤ 32 for each k and so∑6
k=1(2rk − 7)2 ≤ 6× 32 = 54.

Solution 2. [A. Feiz Mohammadi] We prove the more general result: Suppose that each side and each
diagonal of a regular n−gon A1A2 · · ·An is coloured either red or blue, and that no triangle AiAjAk has all
of its sides coloured blue. For each k = 1, 2, · · · , n, let rk be the number of segments AkAj (j 6= k) coloured
red. Then

n∑
k=1

[
2rk −

(
3n− 4

2

)]2

≤ n3

4
.

For 1 ≤ k ≤ n, let bk be the number of segments AkAj (j 6= k) coloured blue. There are
(
bk

2

)
pairs

of these segments; if AkAj and AkAi are two of them, then AiAj must be coloured red. Hence
∑n

k=1

(
bk

2

)
counts the number of red segments, each as often as there are triangles containing it whose other edges are
coloured blue. Suppose that AuAv is one of these red segments. There are bu blue segments emanating from
Au and bv from Av, so that the red segments can be counted at most min {bu, bv} ≤ 1

2 (bu + bv) times.

Hence
n∑

k=1

(
bk

2

)
≤

∑ {
bu + bv

2
: AuAv is coloured red

}
.

Each bk will appear in rk summands, and rk = (n− 1)− bk, so that

1
2

[ n∑
k=1

b2
k −

n∑
k=1

bk

]
=

n∑
k=1

(
bk

2

)
≤ 1

2

n∑
k=1

rkbk

=
1
2

n∑
k=1

[(n− 1− bk)bk] =
n− 1

2

n∑
k=1

bk −
1
2

n∑
k=1

b2
k

=⇒
n∑

k=1

b2
k ≤

n

2

n∑
k=1

bk

=⇒
n∑

k=1

(
2bk −

n

2

)2

≤ n3

4

=⇒
n∑

k=1

[
2rk −

(
3n− 4

2

)]2

≤ n3

4
.
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The upper bound in Feiz Mohammadi’s result is actually attained when r1 = 0 and rk = n−2 for k ≥ 2,
and when rk = n− 1 for each k.

214. Let S be a circle with centre O and radius 1, and let Pi (1 ≤ i ≤ n) be points chosen on the (circumference
of the) circle for which

∑n
i=1

−−→
OPi = 0. Prove that, for each point X in the plane,

∑
|XPi| ≥ n.

Solution 1. Use complex numbers, representing S by the unit circle in the complex plane and the points
Pi by complex numbers zi for which |zi| = 1 and

∑
zi = 0. Then∑

|z − zi| =
∑

|zi||zzi − 1| =
∑

|zzi − 1|

≥
∣∣∣∣ ∑

(zzi − 1)
∣∣∣∣ =

∣∣∣∣z(
∑

zi − 1)
∣∣∣∣

=
∣∣∣∣∑ zi − n

∣∣∣∣ = |0− n| = n .

Solution 2. We have that ∑
|XPi| =

∑
|−−→OPi −

−−→
OX||−−→OPi|

≥ (−−−−−−−→OPi −OX) · (−−→OPi)

= n−
∑−−→

OX · −−→OPi

= n−−−→OX ·
∑−−→

OPi = n .

(The inequality is due to the Cauchy-Schwarz Inequality.)

Solution 3. [O. Bormashenko] Let the points Pi ∼ (cos ui, sinui) be placed on the unit circle of the
cartesian plane and let X ∼ (x, y). For 1 ≤ i ≤ n,

(x sinui − y cos ui)2 ≥ 0 ⇐⇒ x2 sin2 ui + y2 cos2 ui ≥ 2xy cos ui sinui

⇐⇒ x2 + y2 ≥ x2 cos2 ui + 2xy cos ui sinui + y2 sin2 ui ,

so that
|XPi|2 = (x− cos ui)2 + (y − sinui)2

= x2 + y2 + 1− 2x cos ui − 2y sinui

≥ (1− x cos ui − y sinui)2 .

Thus,
n∑

i=1

|XPi| ≥
n∑

i=1

(1− x cos ui − y sinui)

= n− x
n∑

i=1

cos ui − y
n∑

i=1

sinui = n ,

because of
∑n

i=1

−−→
OPi = O and the vanishing of the components of this sum in the two coordinate directions.

Solution 4. [A. Mao] Let the equation of the circle S in the cartesian plane be x2 + y2 = 1. Wolog, we
may assume that X lies on the x−axis. Let r and s be the lines of equations x = 1 and x = −1 respectively.
If X lies outside the circle, the reflection in the nearer of the lines r and s take X to a point Y for which

|OY | =
{

2− |OX|, for 1 < |OX| ≤ 2;
|OX| − 2, for |OP | ≥ 2.

Since Y lies on the same side of the line of reflection as all of the Pi and X lies on the opposite side,∑
|XPi| ≥

∑
|Y Pi|.
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If 1 ≤ |OX| < 3, the first reflection takes X to the interior of the circle. If |OX| ≥ 3, the first reflection
reduces the distance from the origin by 2 and a chain of finitely many reflections will take X into the circle.

Hence, wolog, we may suppose that X lies within or on the circle. Let X ∼ (w, 0) with −1 ≤ w ≤ 0
and let Pi ∼ (cos ui, sinui). Then

|XPi| =
√

(w − cos ui)2 + sin2 ui

=
√

w2 − 2w cos ui + 1

=
√

(1− w cos ui)2 + w2 sin2 ui

≥
√

(1− w cos ui)2 = 1− w cos ui ,

since |w cos ui| ≤ 1. Hence ∑
|XPi| ≥ n− w

∑
cos ui = n .

215. Find all values of the parameter a for which the equation 16x4 − ax3 + (2a + 17)x2 − ax + 16 = 0 has
exactly four real solutions which are in geometric progression.

Solution 1. Let x + (1/x) = t. Then the equation becomes f(t) ≡ 16t2 − at + 2a − 15 = 0. If the
original equation has all real roots, then this quadratic in t must have two real roots t1 and t2, both of which
have absolute value exceeding 2 (why?). The discriminant of the quadratic is equal to a2 − 64(2a − 15) =
(a − 8)(a − 120), so that its roots are real if and only if a ≤ 8 or a ≥ 120. Observe that f(2) = 49 > 0, so
that 2 does not lie between the roots, t1 and t2. Hence the roots are either both less than −2 or both greater
than 2.

If both of the roots, t1 and t2 are negative, then their sum a/16 is less than −4, so that a < −64 and
t1t2 = (2a − 15)/64 < 0. But this yields a contradiction, as the roots have the same sign. Hence, we must
have 2 < t1 < t2, say, so that the four roots x1, x2, x3, x4 of the given equation are positive. Suppose
that x1 ≤ x2 ≤ x3 ≤ x4 with x1 and x4 the solutions of x + (1/x) = t2 and x2 and x3 the solutions of
x + (1/x) = t1. (Explain why this alignment of indices is correct.) Note that x1x4 = x2x3 = 1. Since the
four roots are in geometric progression with common ration (x4/x1)1/3 = x

−2/3
1 , we find that

t2 = x1 +
1
x1

=
(

x
1/3
1 +

1

x
1/3
1

)((
x

1/3
1 +

1

x
1/3
1

)2

− 3
)

= t1(t21 − 3)

so that
a

16
= t1 + t2 = t1(t21 − 2) ,

whence
a = t1(16t21 − 32) = t1(at1 − 2a + 15− 32) = at21 − (2a + 17)t1

so that,
0 = −16t21 + a(t1 − 2) + 15

= −16t21 + 16t1(t21 − 2)(t1 − 2) + 15

= 16t41 − 32t31 − 48t21 + 64t1 + 15

= (2t1 − 5)(2t1 + 3)(4t21 − 4t1 − 1) .

Therefore, t2 = 5/2 and so a = 170.

Indeed, when a = 170, we find that 0 = 16x4−170x3+357x2−170x+16 = (x−8)(x−2)(2x−1)(8x−1).

Solution 2. Let the roots by ur3, ur, ur−1, ur−3, with u > 0. Since the product of the roots is 1, we
must have that u = 1. From the relationship between the coefficients and the roots, we have that

r3 + r + r−1 + r−3 =
a

16
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and
r4 + r2 + 2 + r−2 + r−4 =

2a + 17
16

.

Let s = r + r−1 so that s3 − 2s = a/16 and s4 − 3s2 + 2 = (2a + 17)/(16) = 2(s3 − 2s) + (17/16). Hence

0 = s4 − 2s3 − 3s2 + 4s + (15/16)

= (1/16)(4s2 − 4s− 15)(4s2 − 4s− 1) = (1/16)(2s + 3)(2s− 5)(4s2 − 4s− 1) .

Since s must be real and its absolute value is not less than 2, s = 5/2 and so r is equal to either 2 or 1/2.
Therefore

a = 16
(

8 + 2 +
1
2

+
1
8

)
= 170 .

216. Let x be positive and let 0 < a ≤ 1. Prove that

(1− xa)(1− x)−1 ≤ (1 + x)a−1 .

Solution 1. If x = 1, the inequality degenerates, but the related inequality (1− xa) ≤ (1 + x)a−1(1− x)
holds. If x > 1, then, with y = 1/x, the inequality is equivalent to (1−ya)(1−y)−1 ≤ (1+y)a−1. (Establish
this.) Hence, it suffices to show that the inequality holds when 0 < x < 1.

By the concavity of the function (1+x)1−a for x > −1, we have that (1+x)1−a ≤ 1+(1−a)x. (Observe
that the tangent to the curve y = (1 + x)1−a at (0, 1) is y = 1 + (1− a)x.) Therefore

(1− x)− (1 + x)1−a(1− xa) ≥ (1− x)− [1 + (1− a)x](1− xa)

− x− (1− a)x + xa + (1− a)xa+1 = xa + (1− a)xa+1 − (2− a)x .

By the Arithmetic-Geometric Means Inequality,

xa + (1− a)xa+1

2− a
≥ xa(2−a)−1

x(a+1)(1−a)/(2−a)

= x−(1−a)2/(2−a)x > x ,

since x < 1. The result now follows.

Solution 2. [A. Feiz Mohammadi] As above, we can restrict to the situation that 0 < x < 1. Let
f(a) = (1− xa)(1 + x)1−a. Suppose, to begin with, we take 0 < a = m/n < 1 for some positive integers m
and n. Since m < n, m− k < n− k < n for 0 < k. Hence

xn

(
1− xm

1− x

)
=

m−1∑
k=0

xnxk ≤
m−1∑
k=0

xm−kxk

≤ mxm < nxm ,

whence (using the binomial expansion),

(1 + xn)1/n ≤ 1 +
xn

n

≤ 1 +
xm(1− x)

1− xm
=

1− xm+1

1− xm
.

This inequality holds if we replace x by x1/n. Therefore

(1 + x)1/n ≤ 1− x(m+1)/n

1− xm/n
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=⇒ (1− xm/n)(1 + x)1−(m/n) ≤ (1− x(m+1)/n)(1 + x)1−(m+1)/n .

Thus, f(m/n) ≤ f((m + 1)/n).

Let u and v be two rationals with 0 < u < v < 1, and let n be a common denominator, so that u = m/n
and v = (m + p)/n for some positive integers m and p. Then f(u) ≤ f(v). Let r0 be a given rational in
(0, 1), and let {rk : k ≥ 0} be an increasing sequence for which limk→∞ rk = 1. Since f is an increasing
function of rational a,

1− x = f(1) = lim
k→∞

f(rk) ≥ f(r0) .

Suppose that a is any real with 0 < a < 1. Suppose, if possible, that f(a) > 1 − x and let ε =
f(a) − (1 − x) > 0. Since f is continuous at a, there is a positive number δ with 0 < δ < min (a, 1 − a)
for which |f(r) − f(a)| < ε whenever 0 < |a − r| < δ. Let r be a rational satisfying this condition. Then
0 < r < 1, f(r) < f(1) and so

ε > f(a)− f(r) = (f(a)− f(1)) + (f(1)− f(a)) > f(a)− f(1)

yielding a contradiction. The result follows.

Solution 3. [R. Furmaniak] Fix x > 0, x 6= 1 and let

F (a) = (1− xa)(1 + x)1−a(1− x)−1

for a > 0. Note that F (a) > 0. Observe that, by the Arithmetic-Geometric Means Inequality,

2x(a+b)/2 ≤ xa + xb

so that
(1− xa)(1− xb) ≤ (1− x(a+b)/2)2 .

Hence √
F (a)F (b) ≤ F

(
a + b

2

)
for a, b > 0, so that log F (a) is a concave function on the half-line (0,∞).

Now F (1) = 1 and F (2) = (1 + x)(1 + x)−1 = 1, so that log F (a) vanishes at a = 1 and a = 2. Hence,
by the concavity,

F (a) ≤ 1 ⇐⇒ log F (a) ≤ 0 ⇐⇒ 0 < a ≤ 1 or 2 ≤ a

and the result follows.

217. Let the three side lengths of a scalene triangle be given. There are two possible ways of orienting
the triangle with these side lengths, one obtainable from the other by turning the triangle over, or by
reflecting in a mirror. Prove that it is possible to slice the triangle in one of its orientations into finitely
many pieces that can be rearranged using rotations and translations in the plane (but not reflections
and rotations out of the plane) to form the other.

Solution 1. There are several ways of doing this problem. Observe that, if a geometric figure has a
reflective axis of symmetry, then a rotation of 180◦ about a point on the axis (combined with a translation)
will allow it to be superimposed upon its image reflected in an axis perpendicular to the reflective axis. For
example, this applies to kites and isosceles triangles. So one strategy is to cut the triangle into finitely many
pieces that have such a reflective axis of symmetry.

(a) Cut from the three vertices into the circumcentre of the triangle to obtain three isosceles triangles,
which can be rearranged to give the other orientation.

(b) The triangle has at least one internal altitude. Cutting along this altitude yields two right triangles,
each of which can be sliced along its median to the hypotenuse to give two isosceles triangles.
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(c) Slice along the lines from the incentre of the triangle to the feet of the perpendiculars to the sides
from the incentre. This yields three kites that can be moved to give the other orientation.

Solution 2. Superimpose the triangle onto its image obtained by reflecting in a line parallel to its longest
side so that the corresponding side of one triangle contains the opposite vertex to this side of the other. Make
cuts to produce the quadrilateral common to the triangle and its image. The remaining (isosceles) pieces of
the triangle can be rotated to cover the corresponding parts of the image.

218. Let ABC be a triangle. Suppose that D is a point on BA produced and E a point on the side BC, and
that DE intersects the side AC at F . Let BE + EF = BA + AF . Prove that BC + CF = BD + DF .

Solution 1. [O. Bormashenko] Produce CA to W so that AW = AB; produce FE to X so that
EX = EB; produce FC to Y so that CY = CB; produce FD to Z so that DZ = BD. Then 6 EXB =
6 EBX = 1

2
6 FEB (exterior angle), and

FW = FA + AW = FA + AB = BE + EF = XE + EF = XF

so that 6 FWX = 6 FXW = 1
2
6 CFE.

6 CBY = 6 CY B = 1
2
6 BCF =⇒

6 XBY = 6 XBE − 6 CBY =
1
2
(6 FEB − 6 BCF ) =

1
2
6 CFE

(exterior angle). Hence, 6 XBY = 6 FWX = 6 Y WX and WBXY is concyclic.

Also,

6 ZBW =6 ABW − 6 ABZ = 6 ABW − 6 DBZ =
1
2
(6 CAB − 6 XDB)

=
1
2
6 DFA =

1
2
6 CFE = 6 FXW = 6 ZXW

and so WBXZ is concyclic. Therefore, WXY Z is concyclic and 6 FZW = 6 XZW = 6 XY W = 6 XY F .

Consider triangles ZFW and Y FX. Since FW = FX, 6 ZFW = 6 Y FX and 6 FZW = 6 XY Z,
∆ZFW ≡ ∆Y FX, and so FZ = FY . Therefore,

BC + CF = Y C + CF = Y F = ZF = ZD + DF = BD + DF .

Solution 2. [A. Feiz Mohammadi] Let 6 EBF = u1, 6 ABF = u2, 6 BFE = v1 and 6 BFA = v2. From
the law of sines, we have that

EB : EF : BF = sin v1 : sinu1 : sin(u1 + v1)

whence

(EB + EF ) : BF = (sin v1 + sinu1) : sin(u1 + v1) .

Similarly,

(AB + FA) : BF = (sin v2 + sinu2) : sin(u2 + v2) .
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Hence
sinu1 + sin v1

sin(u1 + v1)
=

sinu2 + sin v2

sin(u2 + v2)
⇔

cos 1
2 (u1 − v1)

cos 1
2 (u1 + v1)

=
cos 1

2 (u2 − v2)
cos 1

2 (u2 + v2)

⇔ cos
1
2
(u1 − v1) cos

1
2
(u2 + v2) = cos

1
2
(u2 − v2) cos

1
2
(u1 + v1)

⇔ cos
1
2
(u1 + u2 + v2 − v1) + cos

1
2
(v1 + v2 + u2 − u1)

= cos
1
2
(u1 + u2 + v1 − v2) + cos

1
2
(v1 + v2 + u1 − u2)

⇔ cos
1
2
(u1 + u2 + v2 − v1)− cos

1
2
(v1 + v2 + u1 − u2)

= cos
1
2
(u1 + u2 + v1 − v2)− cos

1
2
(v1 + v2 + u2 − u1)

⇔ sin
1
2
(u1 + v2) sin

1
2
(v1 − u2) = sin

1
2
(u2 + v1) sin

1
2
(v2 − u1)

⇔
sin 1

2 (v2 + u1) cos 1
2 (v2 − u1)

sin 1
2 (v2 − u1) cos 1

2 (v2 − u1)
=

sin 1
2 (v1 + u2) cos 1

2 (v1 − u2)
sin 1

2 (v1 − u2) cos 1
2 (v1 − u2)

⇔ sinu1 + sin v2

sin(v2 − u1)
=

sinu2 + sin v1

sin(v1 − u2)

⇔ sin 6 FBC + sin 6 BFC

sin 6 FCB
=

sin 6 FBD + sin 6 DFB

sin 6 FDB

⇔ FC + BC

BF
=

DF + DB

BF
⇔ BC + CF = BD + DF .

219. There are two definitions of an ellipse.

(1) An ellipse is the locus of points P such that the sum of its distances from two fixed points F1 and
F2 (called foci) is constant.

(2) An ellipse is the locus of points P such that, for some real number e (called the eccentricity) with
0 < e < 1, the distance from P to a fixed point F (called a focus) is equal to e times its perpendicular
distance to a fixed straight line (called the directrix).

Prove that the two definitions are compatible.

Solution 1. Consider the following set of equivalent equations:√
(x + c)2 + y2 +

√
(x− c)2 + y2 = 2a

⇔
√

(x + c)2 + y2 = 2a−
√

(x− c)2 + y2

⇔ x2 + 2xc + c2 + y2 = 4a2 + x2 − 2xc + c2 + y2 − 4a
√

(x− c)2 + y2

⇔
√

(x− c)2 + y2 = a− xc

a
= e

(
a

e
− x

)
where e = c/a. In applying the first definition, we may take the foci to be at the points (c, 0) and (−c, 0)
and the sum of the focal radii to be 2a. The final equation in the set describes the locus of a point whose
distance from the focus (c, 0) is equal to e times the distance to the line x = a/e.

However, in applying the second definition, we can without loss of generality assume that the focus is
at (c, 0) and the directrix is given by x = d. Where e is the eccentricity, let a = de. Then, reading up the
equations, note that in going from the third to the second, both sides of the second have the same sign.
Then the first equation describes a locus determined by the two foci condition.

Solution 2. In this solution, we start with the standard form of the equation for each definition and
show that it describes the other locus.
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In applying the first definition, place the foci at the points (c, 0) and (−c, 0), where c > 0, and let the
ellipse be the locus of points P for which the sum of the distances to the foci is the constant value 2a > 0.
Thus, the equation of the locus is √

(x− c)2 + y2 +
√

(x + c)2 + y2 = 2a

⇔
√

(x− c)2 + y2 = 2a−
√

(x + c)2 + y2

⇒ x2 − 2cx + c2 + y2 = 4a2 − 4a
√

(x + c)2 + y2 + x2 + 2cx + c2 + y2

⇔ a
√

(x + c)2 + y2 = a2 + cx

⇒ a2x2 + 2a2xc + a2c2 + a2y2 = a4 + 2a2cx + c2x2

⇔ (a2 − c2)x2 + a2y2 = a2(a2 − c2) .

Let b2 = a2 − c2. Then the equation can be written

x2

a2
+

y2

b2
= 1 .

This equation can also be written

y2 = b2 − b2x2

a2
.

Consider the line x = d, where d > 0 and let P be a point on the ellipse, F be the focus at (c, 0) and Q be
the foot of the perpendicular from P to the line x = d. We want to select d so that the ratio PF 2 : PQ2 is
independent of P (x, y). Now

PF 2

PQ2
=

(x− c)2 + y2

(d− x)2

=
x2 − 2cx + c2 + b2 − (b2/a2)x2

x2 − 2dx + d2

=
(a2 − b2)x2 − 2a2cx + (b2 + c2)a2

a2x2 − 2a2dx + a2d2

=
c2

a2

[
x2 − (2a2/c)x + (a4/c2)

x2 − 2dx + d2

]
.

The quantity in the square brackets is equal to 1 when d = a2/c. Thus, when d = a2/c, PF 2 : PQ2 = c2 : a2,
a constant ration. Define e = c/a. Note that e < 1. Then we find that PF = ePQ and a = de.

On the other hand, start with the focus-directrix definition of an ellipse with eccentricity e, focus at
(0, 0) and directrix x = d. Then

x2 + y2 = e2(x2 − 2dx + d2) ⇔ (1− e2)
[
x +

de2

1− e2

]2

+ y2 = d2e2 +
d2e4

1− e2
=

d2e2

1− e2

⇔
[
x +

de2

1− e2

]2

+
y2

1− e2
=

(
de

1− e2

)2

.

Setting y = 0, we can check that the curve cuts the x−axis at the points ((de)/(1+e), 0) and ((−de)/(1−
e), 0). Define a to be equal to

1
2

(
de

1 + e
+

de

1− e

)
=

de

1− e2
,

8



c = ea and b =
√

a2 − c2. Then the equation of the focus-directrix locus becomes

(x + c)2 +
y2

1− (c2/a2)
= a2

⇔ (x + c)2

a2
+

y2

b2
= 1 ,

which is a shift of the locus of equation
x2

a2
+

y2

b2
= 1

c units to the left.

Since it is not completely clear that the latter form indeed represents the locus according to the two-foci
definition, we show that the sum of the distances from any point on the curve to the points (0, 0) and (−2c, 0)
is constant. Note that y2 = (b2/a2)[b2 − x2 − 2cx], from which

x2 + y2 =
(cx− b2)2

a2

and
(x + 2c)2 + y2 = x2 + 4cx + 4c2 + (b2/a2)[b2 − x2 − 2cx]

= (1/a2)[(a2 − b2)x2 + 2c(2a2 − b2)x + 4a2c2 + (a2 − c2)2]

= (1/a2)[c2x2 + 2c(a2 + c2) + (a2 + c2)2]

=
(cx + a2 + c2)2

a2
.

We need to ensure which square root is correct when we calculate the sum of the distances. Note that

b2

c
=

a2

c
− c =

a

e
− c =

d

1− e2
− de2

1− e2
= d

so that x < d = b2/c. Note also that

a2 + c2

c
− de

1− e
=

a2

c
+ c− de

1− e
=

d

1− e2
[1 + e2 − e(1 + e)] =

d

1 + e
> 0 .

Hence

−a2 + c2

c
< − de

1− e
≤ x

at all points on the curve. Hence

√
x2 + y2 +

√
(x + 2c)2 + y2 =

1
a
[(b2 − cx) + (cx + a2 + c2)]

=
a2 + b2 + c2

a
=

2a2

a
= 2a ,

a constant.
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