
Solutions

220. Prove or disprove: A quadrilateral with one pair of opposite sides and one pair of opposite angles equal
is a parallelogram.

Solution 1. The statement is false. To see how to obtain the solution, start with a triangle XY Z with
6 XY Z < 6 XZY < 90◦. Then it is possible to find a point W on Y Z for which XW = XZ (this is the
diagram for the ambiguous case ASS-congruence situation). There are two ways of gluing a copy of triangle
XY W to XY Z (the copy of XW glued along XZ) to give a quadrilateral with an opposite pair of angles
equal to 6 Y and an opposite pair of sides equal to |XY |. One of these satisfies the condition and is not a
parallelogram.

C. Shen followed this strategy with |XY | = 8, 6 XY Z = 60◦, |Y W | = 3 and |Y Z| = 5 to obtain a
quadrilateral ABCD with |AB| = 5, |BC| = 8, |CD| = 3, |DA| = 8, |BD| = 7 and 6 DAB = 6 DCB = 60◦.

Solution 2. The statement is false. Suppose that we have fixed D, A, B and that AB is one of the equal
sides and 6 DAB is one of the equal angles. Then C is the intersection of two circles. One of the circles
contains the locus of points at which DB subtends an angle equal to 6 DAB and the other circle is that with
centre D and radius equal to |AB|. The two circles are either tangent or have two points of intersection.
One of these points will give the expected parallelogram, so the question arises whether the other point will
give a suitable quadrilateral. We show that it can.

Using coordinate geometry, we may take A ∼ (0, 0), B ∼ (3, 0), D ∼ (2, 2) so that 6 DAB = 45◦. The
point E that completes the parallelogram is (5, 2), and this will be one of the intersections of the two circles.
The circle that subtends an angle of 45◦ from DB has as its centre the circumcentre of ∆BDE, namely
(7/2, 3/2); this circle has equation x2− 7x+ y2− 3y +12 = 0. The circle with centre D and radius 3 = |AB|
has equation x2− 4x + y2− 4y− 1 = 0. These circles intersect at the points E ∼ (5, 2) and C ∼ (22/5, 1/5).
The quadrilateral ABCD satisfies the given conditions but is not a parallelogram.

Comment. Investigate what happens when A, B and D are assigned the coordinates (0, 0), (2, 0) and
(i) (1, 1) or (ii) (2, 2), respectively.

Comment. Consider the following two “proofs” that the quadrilateral must be a parallelogram.

“Proof” 1. Let AB = CD and 6 A = 6 C. Suppose that X and Y , respectively, are the feet of the
perpendiculars dropped from B to AD and from D to BC. Then triangles AXB and CY D, having equal
acute angles and equal hypotenuses must be congruent. Hence AX = CY , and also BX = DY , from which
it can be deduced that triangles BXD and DY B are congruent. Therefore XD = Y B and so AD = BC
and the quadrilateral is a parallelogram.

“Proof” 2. Suppose that AB = CD and that 6 B = 6 D. Applying the Law of Sines, we find that

DC

sin 6 DAC
=

AC

sin 6 ADC
=

AC

sin 6 ABC
=

AB

sin 6 ACB
=

CD

sin 6 ACB
.

Therefore, 6 DAC = 6 ACB so that 6 DCA = 6 BAC and AB‖DC.

221. A cycloid is the locus of a point P fixed on a circle that rolls without slipping upon a line u. It consists
of a sequence of arches, each arch extending from that position on the locus at which the point P rests
on the line u, through a curve that rises to a position whose distance from u is equal to the diameter
of the generating circle and then falls to a subsequent position at which P rests on the line u. Let v be
the straight line parallel to u that is tangent to the cycloid at the point furthest from the line u.

(a) Consider a position of the generating circle, and let P be on this circle and on the cycloid. Let PQ
be the chord on this circle that is parallel to u (and to v). Show that the locus of Q is a similar cycloid
formed by a circle of the same radius rolling (upside down) along the line v.

(b) The region between the two cycloids consists of a number of “beads”. Argue that the area of one of
these beads is equal to the area of the generating circle.
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(c) Use the considerations of (a) and (b) to find the area between u and one arch of the cycloid using a
method that does not make use of calculus.

Solution. (a) Suppose the circle generating the cycloid rotates from left to right. We consider half the
arc of the cycloid joining a point T to a point W on v. Let P be an intermediate point on the cycloid and Q
be the point on the generating circle as described in the problem. Suppose that the perpendicular dropped
from W to u meets u at Y and the perpendicular dropped from T to v meets v at X. Thus TXWY is a
rectangle with |TX| = |WY | = 2r and |TY | = |XW | = πr, where r is the radius of the generating circle.

Let the generating circle touch u and v at U and V , respectively. Then |arc (PU)| = |TU |, so that

|arc V Q| = |arc V P | = πr − |arc PU | = πr − |TU | = |UY | = |V W | .

This means that Q is on the circle of radius r rolling to the left generating a second cycloid passing through
W , Q, T . This second cycloid is the image of the first under a 180◦ rotation that interchanges the points T
and W .

(b, c) Let α be the area of the region within the rectangle TXWY bounded by the two cycloids (one
of the “beads”), β be the area above the cycloid TPW and γ the area below the cycloid TQW within the
rectangle. Because the region TXV WP is congruent to the region WY UTQ, β = γ. Hence

α + 2β = α + β + γ = (2r)(πr) = 2πr2 .

At each vertical height between the lines u and v, the length of the chord PQ of the “bead” is equal
to the length of the chord at the same height of the generating circle, so that the “bead” can be regarded
as being made of infinitesimal slats of the circle that have been translated. Thus, the “bead” has the same
area as the generating circle, namely πr2 (this is due to a principle enunciated by a seventeenth century
mathematician, Cavalieri). Thus α = πr2 and 2β = 2πr2 − α = πr2. The area under the cycloid and above
TY is equal to α + β and the area under a complete arch of the cycloid is 2α + 2β = 2πr2 + πr2 = 3πr2,
three times the area of the generating circle.

222. Evaluate
∞∑

n=1

tan−1

(
2
n2

)
.

Solution 1. Let an = tan−1 n for n ≥ 0. Thus, 0 < an < π/2 and tan an = n. Then

tan(an+1 − an−1) =
(n + 1)− (n− 1)

1 + (n2 − 1)
=

2
n2

for n ≥ 1. Then
m∑

n=1

tan−1 2
n2

= tan−1(m + 1) + tan−1 m− tan−1 1− tan−1 0 .

Letting m →∞ yields the answer π/2 + π/2− π/4− 0 = 3π/4.

Solution 2. Let bn = tan−1(1/n) for n ≥ 0. Then

tan(bn−1 − bn+1) =
2
n2

for n ≥ 2, whence
m∑

n=1

tan−1 2
n2

=tan−1 2 +
m∑

n=2

(bn−1 − bn+1) = tan−1 2 + tan−1 1 + tan−1 1
2
− tan−1 1

m
− tan−1 1

m + 1

= (tan−1 2 + cot−1 2) + tan−1 1− tan−1 1
m
− tan−1 1

m + 1

=
π

2
+

π

4
− tan−1 1

m
− tan−1 1

m + 1
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for m ≥ 3, from which the result follows by letting m tend to infinity.

Solution 3. [S. Huang] Let sn =
∑n

k=1 tan−1(2/n2) and tn = tan sn. Then {tn} = {2,∞,−9/2,−14/5.−
20/9, · · ·} where the numerators of the fractions are {−2,−5,−9,−14,−20, · · ·} and the denominators are
{−1, 0, 2, 5, 8, · · ·}. We conjecture that

tn =
−n(n + 3)

(n− 2)(n + 1)

for n ≥ 1. This is true for 1 ≤ n ≤ 5. Suppose that it holds to n = k − 1 ≥ 5, so that tk−1 =
−(k − 1)(k + 2)/(k − 3)k. Then

tk =
tk−1 + (2/k2)
1− 2tk−1k−2

=
−k2(k − 1)(k + 2) + 2(k − 3)k
k3(k − 3) + 2(k − 1)(k + 2)

=
−k(k + 3)(k2 − 2k + 2)

(k − 2)(k + 1)(k2 − 2k + 2)
=

−k(k + 3)
(k − 2)(k + 1)

.

The desired expression for tn holds by induction and so limn→∞ tn = −1. For n ≥ 3, tn < 0 and
tan−1(2/n2) < π/2, so we must have π/2 < sn < π and sn = π − tan−1 tn. Therefore

lim
n→∞

sn = tan−1(π + lim
n→∞

tn) = π − (π/4) = (3π)/4 .

223. Let a, b, c be positive real numbers for which a + b + c = abc. Prove that

1√
1 + a2

+
1√

1 + b2
+

1√
1 + c2

≤ 3
2

.

Solution 1. Let a = tan α, b = tan β, c = tan β, where α, β, γ ∈ (0, π/2). Then

tan(α + β + γ) =
tanα + tanβ + tan γ − tanα tanβ tan γ

1− tanα tanβ − tanβ tan γ − tan γ tanα
=

a + b + c− abc

1− ab− bc− ca
= 0 ,

whence α + β + γ = π. Then, the left side of the inequality is equal to

cos α + cos β + cos γ = cos α + cos β − cos(α + β)

= 2 cos
(

α + β

2

)
cos

(
α− β

2

)
− 2 cos2

(
α + β

2

)
+ 1

≤ 2 cos
(

α + β

2

)
− 2 cos2

(
α + β

2

)
+ 1

= 2 sin
(

γ

2

)
− 2 sin2

(
γ

2

)
+ 1

=
3
2
− 1

2
(2 sin(γ/2)− 1)2 ≤ 3

2
,

with equality if and only if α = β = γ = π/3.

Solution 2. Define α, β and γ and note that α + β + γ = π as in Solution 1. Since cos x is a concave
function on [0, π/2], we have that

cos α + cos β + cos γ

3
≤ cos

(
α + β + γ

3

)
= cos

π

3
=

1
2

,
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from which the result follows.

Solution 3. [G. N. Tai] Define α, β, γ as in Solution 1 and let s = cos α + cos β + cos γ. Then

s = 2 cos
α + β

2
cos

α− β

2
+ 1− 2 sin2 γ

2
= 2 sin

γ

2
cos

α− β

2
+ 1− 2 sin2 γ

2
.

Thus, for each α. β, the quadratic equation

2t2 − 2 cos
α− β

2
· t + (s− 1) = 0

has at least one real solution, namely t = sin(γ/2). Hence, its discriminant is positive, so that

cos2
α− β

2
− 2(s− 1) ≥ 0 =⇒ 2s ≤ 2 + cos2

α− β

2
≤ 3 =⇒ s ≤ 3/2 .

Equality occurs if and only if α = β = γ = π/3.

224. For x > 0, y > 0, let g(x, y) denote the minimum of the three quantities, x, y +1/x and 1/y. Determine
the maximum value of g(x, y) and where this maximum is assumed.

Solution 1. When (x, y) = (
√

2, 1/
√

2), all three functions x, y + (1/x), 1/y assume the value
√

2 and so
g(
√

2, 1/
√

2) =
√

2.

If 0 < x ≤
√

2, then g(x, y) ≤ x ≤
√

2. Suppose that x ≥
√

2. If y ≥ 1/
√

2, then g(x, y) ≤ 1/y ≤
√

2. If
0 < y ≤ 1/

√
2, then

g(x, y) ≤ y + (1/x) ≤ 1√
2

+
1√
2

=
√

2 .

Thus, when x > 0, y > 0, then g(x, y) ≤
√

2. If either x 6=
√

2 or y 6= 1/
√

2, then the foregoing inequalities
lead to g(x, y) <

√
2. Hence g(x, y) assumes its maximum value of

√
2 if and only if (x, y) = (

√
2, 1/

√
2).

Solution 2. [M. Abdeh-Kolachi] Let u be the minimum of x, y + (1/x) and 1/y. Then u ≤ x, u ≤ 1/y
and u ≤ y + (1/x). By the first two inequalities, we also have than y + (1/x) ≤ (1/u) + (1/u) = 2/u, so that
u ≤ 2/u and u ≤

√
2. Hence g(x, y) ≤

√
2 for all x, y > 0. Since g(

√
2, 1/

√
2) =

√
2, g has a maximum value

of
√

2 assumed when (x, y) = (
√

2, 1/
√

2).

We need to verify that this maximum is assumed nowhere else. Suppose that g(x, y) =
√

2. Then√
2 ≤ x,

√
2 ≤ 1/y and √

2 ≤ y + (1/x) ≤ (1/
√

2) + (1/
√

2) =
√

2 .

We must have equality all across the last inequality and this forces both x and 1/
√

y to equal
√

2.

Solution 3. [R. Appel] If x ≤ 1 and y ≤ 1, then g(x, y) ≤ x ≤ 1. If y ≥ 1, then g(x, y) ≤ 1/y ≤ 1. It
remains to examine the case x > 1 and y < 1, so that y + (1/x) < 2. Suppose that min (x, 1/y) = a and
max (x, 1/y) = b. Then min (1/x, y) = 1/a and max (1/x, y) = 1/b, so that

y +
1
x

=
1
a

+
1
b

=
a + b

ab
.

Hence g(x, y) = min (a, (a + b)/(ab)). Either a2 ≤ 2 or a2 ≥ 2. But in the latter case,

a + b

ab
≤ 2b√

2b
=
√

2 .

In either case, g(x, y) ≤
√

2. This maximum value is attained when (x, y) = (
√

2, 1/
√

2).
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Solution 4. [D. Varodayan] By the continuity of the functions, each of the regions {(x, y) : 0 < x <
y + (1/x), xy < 1}, {(x, y) : 0 < x, y + (1/x) < x, y + (1/x) < (1/y)}, and {(x, y) : 0 < (1/y) < x, (1/y) <
y + (1/x)} is an open subset of the plane; using partial derivatives, we see that none of the three functions
being minimized have any critical values there. It follows that any extreme values of g(x, y) must occur on
one of the curves defined by the equations

x = y + (1/x) (1)

x = 1/y (2)

y + (1/x) = (1/y) (3)

On the curve (1), x > 1 and

g(x, y) = min
(

x,
x

x2 − 1

)
=

{
x, if x ≤

√
2;

x
x2−1 , if x ≥

√
2.

On the curve (2),
g(x, y) = min (x, 2/x)

=
{

x, if x ≤
√

2;
2/x, if x ≥

√
2.

On the curve (3), 0 < y < 1 and

g(x, y) = min
(

y

1− y2
,
1
y

)
=

{
y

1−y2 , if 0 < y < 1√
2
;

1/y, if 1√
2
≤ y ≤ 1.

On each of these curves, g(x, y) reaches its maximum value of
√

2 when (x, y) = (
√

2.1/
√

2).

Solution 5. [J. Sparling] Let z = 1/y. For fixed z, let

vz(x) = min {x, z, (1/x) + (1/z)}

and
w(z) = max {vz(x) : x > 0} .

Suppose that z ≤ 1. Then (1/x) + (1/z) ≥ z, so vz(x) = min {x, z} and

vz(x) =
{

x, for x ≤ z;
z, for x ≥ z;

so that w(z) = z when z ≤ 1. Suppose that 1 < z ≤
√

2, so that z ≤ z/(z2 − 1). Then

vz(x) =


x, for x ≤ z;
z, for z ≤ x < z/(z2 − 1);
(1/x) + (1/z), for z/(z2 − 1) ≤ x;

so that w(z) = z when 1 < z ≤
√

2. Finally, suppose that
√

2 > z. Note that x ≤ (1/x) + (1/z) ⇔
zx2−x−z ≤ 0. Then the minimum of x and (1/x)+(1/z) is x when zx2−x−z ≤ 0, or x ≤ (1+

√
1 + 4z2)/2z.

Since
√

2−
[
1 +

√
1 + 4z2

2z

]
=

(2
√

2z − 1)−
√

1 + 4z2

2z

=
4z2 − 4

√
2z

2z[(2
√

2z − 1) +
√

1 + 4z2]

=
2(z −

√
2)

(2
√

2z − 1) +
√

1 + 4z2
≥ 0 ,
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this minimum is always less than z, so that

vz(x) =

{
x, for x ≤ 1+

√
1+4z2

2z
1
x + 1

z , for x ≥ 1+
√

1+4z2

2z ,

so that w(z) = (1 +
√

1 + 4z2)/(2z) ≤
√

2 when
√

2 ≤ z. Hence, the minimum value of w(z) =
√

2 and this
is the maximum value of g(x, y), assumed when (x, y) = (

√
2, 1/

√
2).

Solution 6. For x > 0, let

hx(y) = min
(

x, y +
1
x

,
1
y

)
.

Suppose that x ≤
√

2. Then x− (1/x) ≤ (1/x) and

hx(y) =


y + 1

x , if 0 < y ≤ x− 1
x ;

x, if x− 1
x ≤ y ≤ 1

x ;
1
y , if 1

x ≤ y;

so that the minimum value of hx(y) is x, and this occurs when x− (1/x) ≤ y ≤ (1/x). Suppose that x ≥
√

2.
Then y + (1/x) ≤ (1/y) ⇔ xy2 + y − x ≤ 0 and

√
2−

[
1 +

√
1 + 4x2

2x

]
=

(
√

8x− 1)−
√

1 + 4x2

2x

=
4x2 − 4

√
2x

2x[(
√

8x− 1) +
√

1 + 4x2)

=
2(x−

√
2)

(
√

8x− 1) +
√

1 + 4x2
≥ 0 ,

so that
1 +

√
1 + 4x2

2x
≤
√

2 ≤ x .

hx(y) =

{
y + 1

x , when 0 < y ≤ −1+
√

1+4x2

2x ;
1
y , when −1+

√
1+4x2

2x ≤ y;

so that the minimum value of hx(y) is (1+
√

1 + 4x2)/(2x), and this occurs when y = (−1+
√

1 + 4x2)/(2x).

Thus, we have to maximize the function u(x) where

u(x) =
{

x, if 0 < x ≤
√

2;
1+
√

1+4x2

2x , if
√

2 ≤ x.

By what we have shown, this maximum is
√

2 and is attained when x =
√

2. The result follows.

225. A set of n lighbulbs, each with an on-off switch, numbered 1, 2, · · · , n are arranged in a line. All are
initially off. Switch 1 can be operated at any time to turn its bulb on of off. Switch 2 can turn bulb 2
on or off if and only if bulb 1 is off; otherwise, it does not function. For k ≥ 3, switch k can turn bulb k
on or off if and only if bulb k−1 is off and bulbs 1, 2, · · · , k−2 are all on; otherwise it does not function.

(a) Prove that there is an algorithm that will turn all of the bulbs on.

(b) If xn is the length of the shortest algorithm that will turn on all n bulbs when they are initially off,
determine the largest prime divisor of 3xn + 1 when n is odd.
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Solution. (a) Clearly x1 = 1 and x2 = 2. Let n ≥ 3. The only way that bulb n can be turned on is for
bulb n − 1 to be off and for bulbs 1, 2, · · · , n − 2 to be turned on. Once bulb n is turned on, then we need
get bulb n− 1 turned on. The only way to do this is to turn off bulb n− 2; but for switch n− 2 to work, we
need to have bulb n − 3 turned off. So before we can think about dealing with bulb n − 1, we need to get
the first n− 2 bulbs turned off. Then we will be in the same situation as the outset with n− 1 rather than
n bulbs. Thus the process has the following steps: (1) Turn on bulbs 1, · · · , n − 2; (2) Turn on bulb n; (3)
Turn off bulbs n− 2, · · · , 1; (3) Turn on bulbs 1, 2, · · · , n. So if, for each positive integer k, yk is the length
of the shortest algorithm to turn them off after all are lit, then

xn = xn−2 + 1 + yn−2 + xn−1 .

We show that xn = yn for n = 1, 2, · · ·. Suppose that we have an algorithm that turns all the bulbs on.
We prove by induction that at each step we can legitimately reverse the whole sequence to get all the bulbs
off again. Clearly, the first step is to turn either bulb 1 or bulb 2 on; since the switch is functioning, we can
turn the bulb off again. Suppose that we can reverse the first k− 1 steps and are at the kth step. Then the
switch that operates the bulb at that step is functioning and can restore us to the situation at the end of
the (k − 1)th step. By the induction hypothesis, we can go back to having all the bulbs off. Hence, given
the bulbs all on, we can reverse the steps of the algorithm to get the bulbs off again. A similar argument
allows us to reverse the algorithm that turns the bulbs off. Thus, for each turning-on algorithm there is a
turning-off algorithm of equal length, and vice versa. Thus xn = yn.

We have that xn = xn−1 + 2xn−2 + 1 for n ≥ 3. By, induction, we show that, for m = 1, 2, · · ·,

x2m = 2x2m−1 and x2m+1 = 2x2m + 1 = 4x2m−1 + 1 .

This is true for m = 1. Suppose it is true for m ≥ 1. Then

x2(m+1) = x2m+1 + 2x2m + 1 = 2(x2m + 1) + 4x2m−1

= 2(x2m + 2x2m−1 + 1) = 2x2m+1 ,

and
x2(m+1)+1 = x2(m+1) + 2x2m+1 + 1 = 2x2m+1 + 4x2m + 3

= 2(x2m+1 + 2x2m + 1) + 1 = 2x2(m+1) + 1 .

Hence, for m ≥ 1,

3x2m+1 + 1 = 4(3x2m−1 + 1) = · · · = 4m(3x1 + 1) = 4m+1 = 22(m+1) .

Thus, the largest prime divisor is 2.

226. Suppose that the polynomial f(x) of degree n ≥ 1 has all real roots and that λ > 0. Prove that the set
{x ∈ R : |f(x)| ≤ λ|f ′(x)|} is a finite union of closed intervals whose total length is equal to 2nλ.

Solution. Wolog, we may assume that the leading coefficient is 1. Let f(x) =
∏k

i=1(x − ri)mi , where
n =

∑k
i=1 mi. Then

f ′(x)
f(x)

=
k∑

i=1

mi

x− ri
.

Note that the derivative of this function, −
∑k

i=1 mi(x − ri)−2 < 0, so that it decreases on each interval
upon which it is defined. By considering the graph of f ′(x)/f(x), we see that f ′(x)/f(x) ≥ 1/λ on finitely
many intervals of the form (ri, si], where ri < si and the ri and sj interlace, and f ′(x)/f(x) ≤ −1/λ on
finitely many intervals of the form [ti, ri), where ti < ri and the ti and rj interlace. For each i, we have
ti < ri < si < ti+1.
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The equation f ′(x)/f(x) = 1/λ can be rewritten as

0 =(x− r1)(x− r2) · · · (x− rk)− λ
k∑

i=1

mi(x− r1) · · · ̂(x− ri) · · · (x− rk)

= xk −
( k∑

i=1

ri − λ
k∑

i=1

mi

)
xk−1 + · · · .

(The “hat” indicates that the term in the product is deleted.) The sum of the roots of this polynomial is

s1 + s2 + · · ·+ sk = r1 + · · ·+ rk − λn ,

so that
∑m

i=1(si−ri) = λn. This is the sum of the lengths of the intervals (ri, si] on which f ′(x)/f(x) ≥ 1/λ.
Similarly, we can show that f ′(x)/f(x) ≤ −1/λ on a finite collection of intervals of total length λn. The set
on which the inequality of the problem holds is equal to the union of all of these half-open intervals and the
set {r1, r2, · · · , rk}. The result follows.
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