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Please send your solution to
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no later than September 30, 2003. It is important that your complete mailing address and your email address
appear on the front page.

227. [Since the original statement of this problem in May was incorrect and not everyone picked up the
correction, it is reposed.] Let n be an integer exceeding 2 and let a0, a1, a2, · · · , an, an+1 be positive real
numbers for which a0 = an, a1 = an+1 and

ai−1 + ai+1 = kiai

for some positive integers ki, where 1 ≤ i ≤ n.

Prove that
2n ≤ k1 + k2 + · · ·+ kn ≤ 3n .

241. [Corrected.] Determine
sec 40◦ + sec 80◦ + sec 160◦ .

248. Find all real solutions to the equation√
x + 3 − 4

√
x− 1 +

√
x + 8 − 6

√
x− 1 = 1 .

249. The non-isosceles right triangle ABC has 6 CAB = 90◦. Its inscribed circle with centre T touches the
sides AB and AC at U and V respectively. The tangent through A of the circumscribed circle of triangle
ABC meets UV in S. Prove that:

(a) ST‖BC;

(b) |d1−d2| = r , where r is the radius of the inscribed circle, and d1 and d2 are the respective distances
from S to AC and AB.

250. In a convex polygon P , some diagonals have been drawn so that no two have an intersection in the
interior of P . Show that there exists at least two vertices of P , neither of which is an enpoint of any of
these diagonals.

251. Prove that there are infinitely many positive integers n for which the numbers {1, 2, 3, · · · , 3n} can be
arranged in a rectangular array with three rows and n columns for which (a) each row has the same
sum, a multiple of 6, and (b) each column has the same sum, a multiple of 6.

252. Suppose that a and b are the roots of the quadratic x2 + px + 1 and that c and d are the roots of the
quadratic x2 + qx + 1. Determine (a− c)(b − c)(a + d)(b + d) as a function of p and q.

253. Let n be a positive integer and let θ = π/(2n + 1). Prove that cot2 θ, cot2 2θ, · · ·, cot2 nθ are the
solutions of the equation(

2n + 1
1

)
xn −

(
2n + 1

3

)
xn−1 +

(
2n + 1

5

)
xn−2 − · · · = 0 .

254. Determine the set of all triples (x, y, z) of integers with 1 ≤ x, y, z ≤ 1000 for which x2 + y2 + z2 is a
multiple of xyz.
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