
Solutions.

178. Suppose that n is a positive integer and that x1, x2, · · · , xn are positive real numbers such that x1 +
x2 + · · ·+ xn = n. Prove that

n∑
i=1

n
√
axi + b ≤ a+ b+ n− 1

for every pair a, b of real numbers with each axi + b nonnegative. Describe the situation when equality
occurs.

Solution. Regarding axi + b as a product with n − 1 ones, we use the arithmetic-geometric means
inequality to obtain that

n
√
axi + b ≤ (axi + b) + 1 + · · ·+ 1

n

for 1 ≤ i ≤ n, with equality if and only if xi = (1 − b)/a. Adding these n inequalities yields the desired
result.

179. Determine the units digit of the numbers a2, b2 and ab (in base 10 numeration), where

a = 22002 + 32002 + 42002 + 52002

and
b = 31 + 32 + 33 + · · ·+ 32002 .

Solution. Observe that, for positive integer k, 24k ≡ 6 and 34k ≡ 1, modulo 10, so that 22002 ≡ 6 · 4 ≡ 4,
32002 ≡ 9 and 42002 ≡ 6, modulo 10. Hence a ≡ 4 + 9 + 6 + 5 ≡ 4 and a2 ≡ 6, modulo 10. Note that
b = (1/2)(32003 − 3), and that 32003 − 3 ≡ 7− 3 = 4, modulo 10. Since b is the sum of evenly many factors,
it is even, and so b ≡ 2 and b2 ≡ 4, modulo 10. Finally, ab ≡ 4 · 2 = 8, modulo 10. Hence the units digits of
a2, b2 and ab are respectively 6, 4 and 8.

180. Consider the function f that takes the set of complex numbers into itself defined by f(z) = 3z + |z|.
Prove that f is a bijection and find its inverse.

Solution. Injection (one-one). Suppose that z = x+ yi and w = u+ vi, and that f(z) = f(w). Then

3x+ 3yi+
√
x2 + y2 = 3u+ 3vi+

√
u2 + v2 .

Equating imaginary parts yields that y = v, so that

3(x− u) =
√
u2 + y2 −

√
x2 + y2 = (u2 − x2)/(

√
u2 + y2 +

√
x2 + y2) .

Suppose, if possible, that u 6= x. Then

3(
√
x2 + y2 + x) = −[3(

√
u2 + y2 + u] .

Since
√
x2 + y2 ≥ |x|, and

√
u2 + y2 ≥ |u|, we see that, unless x = y = u = v = 0, this equation is impossible

as the left side is positive and the right is negative Thus, x = u.

Surjection (onto). Let a+ bi be an arbitrary complex number, and suppose that f(x+ yi) = a+ bi. It
is straightforward to see that f(z) = 0 implies that z = 0, so we may assume that a2 + b2 > 0. We must
have that

3x+
√
x2 + y2 = a

and
3y = b .
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Substituting y = b/3 into the first equation yields√
9x2 + b2 = 3a− 9x .

For this equation to be solvable, it is necessary that 3x ≤ a. Squaring both sides of the equation leads to

72x2 − 54ax+ 9a2 − b2 = 0 .

When x = a/3 is substituted into the left side of the equation, we obtain 8a2−18a2+9a2−b2 = −(a2+b2) < 0.
This means that the two roots of the equation straddle a/3, so that exactly one of the roots satisfies the
necessary condition 3x ≤ a. Hence, we must have

(x, y) =
(

9a−
√

9a2 + 8b2

24
,
b

3

)
.

Thus, the function is injective and surjective, and so it is a bijection.

181. Consider a regular polygon with n sides, each of length a, and an interior point located at distances a1,
a2, · · ·, an from the sides. Prove that

a
n∑
i=1

1
ai
> 2π .

Solution. By constructing triangles from bases along the sides of the polygons to the point A, we see
that the area of the polygon is equal to

aa1

2
+
aa2

2
+ · · ·+ aan

2
=
a

2

n∑
i=1

ai .

However, by constructing triangles whose bases are the sides of the polygons and whose apexes are at the
centre of the polygon, we see that the area of the polygon is equal to 1

4na
2 cot(π/n). Making use of the

arithmetic-harmonic means inequality, we find that

a

2
cot

π

n
=

1
n

n∑
i=1

ai ≥
n∑n

i=1 1/ai
,

from which
n∑
i=1

1
ai
≥ 2n · tan(π/n)

a
.

Since tanx > x for 0 < x < π/2, we have that tan(π/n) > (π/n), we obtain that
n∑
i=1

1
ai
>

2π
a
.

182. Let M be an interior point of the equilateral triangle ABC with each side of unit length. Prove that

MA.MB +MB.MC +MC.MA ≥ 1 .

Solution. Let the respective lengths of MA, MB and MC be x, y and z, and let the respective angles
BMC, CMA and AMB be α, β and γ. Then α+ β + γ = 2π. Now

cosα+ cosβ + cos γ = 2 cos
α+ β

2
cos

α− β
2

+ 2 cos2 γ

2
− 1

= −2 cos
γ

2
cos

α− β
2

+ 2 cos2 γ

2
− 1

=
1
2

[
2 cos

γ

2
− cos

α− β
2

]2

+
1
2

sin2 α− β
2
− 3

2
≥ −3

2
.
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¿From the Law of Cosines applied to the triangles MBC, MCA and MAB, we convert this equation to

y2 + z2 − 1
2yz

+
x2 + z2 − 1

2xz
+
y2 + x2 − 1

2xy
≥ −3

2
.

This simplifies to (x+ y + z)(xy + xz + yz)− (x+ y + z) ≥ 0. Since x+ y + z 6= 0, the result follows.

183. Simplify the expression √
1 +
√

1− x2((1 + x)
√

1 + x− (1− x)
√

1− x)
x(2 +

√
1− x2)

,

where 0 < |x| < 1.

Solution. Observe that

√
1 +

√
1− x2 =

√
1 + x+ 2

√
1− x2 + 1− x
2

=

√
(
√

1 + x+
√

1− x)2

2

=
√

1 + x+
√

1− x√
2

.

Then, using the formula a3 − b3 = (a− b)(a2 + ab+ b2), we find that the expression given in the problem is
equal to

(
√

1 + x+
√

1− x)(
√

1 + x
3 −
√

1− x3
)

x
√

2(2 +
√

1− x2)

=
(
√

1 + x+
√

1− x)(
√

1 + x−
√

1− x)(1 + x+
√

1− x2 + 1− x)
x
√

2(2 +
√

1− x2)

=
(1 + x− 1 + x)(2 +

√
1− x2)

x
√

2(2 +
√

1− x2)

=
2x
x
√

2
=
√

2 .

184. Using complex numbers, or otherwise, evaluate

sin 10◦ sin 50◦ sin 70◦ .

Solution. Let z = cos 20◦ + i sin 20◦, so that 1/z = cos 20◦ − i sin 20◦. Then, by De Moivre’s Theorem,
z9 = −1. Now,

sin 70◦ = cos 20◦ =
1
2

(z +
1
z

) =
z2 + 1

2z
,

sin 50◦ = cos 40◦ =
1
2

(z2 +
1
z2

) =
z4 + 1

2z2
,

and

sin 10◦ = cos 80◦ =
1
2

(z4 +
1
z4

) =
z8 + 1

2z4
.
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Hence

sin 10◦ sin 50◦ sin 70◦ =
z2 + 1

2z
· z

4 + 1
2z2

· z
8 + 1
2z4

=
1 + z2 + z4 + z6 + z8 + z10 + z12 + z14

8z7

=
1− z16

8z7(1− z2)

=
1− z7z9

8(z7 − z9)

=
1 + z7

8(z7 + 1)
=

1
8
.
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