Solutions

139. Let A, B, C be three pairwise orthogonal faces of a tetrahedran meeting at one of its vertices and having respective areas a, b, c. Let the face D opposite this vertex have area d. Prove that

$$
d^{2}=a^{2}+b^{2}+c^{2}
$$

Solution 1. Let the tetrahedron be bounded by the three coordinate planes in \mathbf{R}^{3} and the plane with equation $\frac{x}{u}+\frac{y}{v}+\frac{z}{w}=1$, where u, v, w are positive. The vertices of the tetrahedron are $(0,0,0),(u, 0,0)$, $(0, v, 0),(0,0, w)$. Let d, a, b, c be the areas of the faces opposite these respective vertices. Then the volume V of the tetrahedron is equal to

$$
\frac{1}{3} a u=\frac{1}{3} b v=\frac{1}{3} c w=\frac{1}{3} d k
$$

where k is the distance from the origin to its opposite face. The foot of the perpendicular from the origin to this face is located at $\left((u m)^{-1},(v m)^{-1} .(w m)^{-1}\right)$, where $m=u^{-2}+v^{-2}+w^{-2}$, and its distance from the origin is $m^{-1 / 2}$. Since $a=3 V u^{-1}, b=3 V v^{-1}, c=3 V w^{-1}$ and $d=3 V m^{1 / 2}$, the result follows.

Solution 2. [J. Chui] Let edges of lengths x, y, z be common to the respective pairs of faces of areas $(b, c),(c, a),(a, b)$. Then $2 a=y z, 2 b=z x$ and $2 c=x y$. The fourth face is bounded by sides of length $u=\sqrt{y^{2}+z^{2}}, v=\sqrt{z^{2}+x^{2}}$ and $w=\sqrt{x^{2}+y^{2}}$. By Heron's formula, its area d is given by the relation

$$
\begin{aligned}
16 d^{2}= & (u+v+w)(u+v-w)(u-v+w)(-u+v+w) \\
= & {\left[(u+v)^{2}-w^{2}\right]\left[\left(w^{2}-(u-v)^{2}\right]=\left[2 u v+\left(u^{2}+v^{2}-w^{2}\right)\right]\left[2 u v-\left(u^{2}+v^{2}-w^{2}\right)\right]\right.} \\
= & 2 u^{2} v^{2}+2 v^{2} w^{2}+2 w^{2} u^{2}-u^{4}-v^{4}-w^{4} \\
= & 2\left(y^{2}+z^{2}\right)\left(x^{2}+z^{2}\right)+2\left(x^{2}+z^{2}\right)\left(x^{2}+y^{2}\right)+2\left(x^{2}+y^{2}\right)\left(x^{2}+z^{2}\right) \\
& \quad-\left(y^{2}+z^{2}\right)^{2}-\left(x^{2}+z^{2}\right)^{2}-\left(x^{2}+y^{2}\right)^{2} \\
= & 4 x^{2} y^{2}+4 x^{2} z^{2}+4 y^{2} z^{2}=16 a^{2}+16 b^{2}+16 c^{2},
\end{aligned}
$$

whence the result follows.
Solution 3. Use the notation of Solution 2. There is a plane through the edge bounding the faces of areas a and b perpendicular to the edge bounding the faces of areas c and d. Suppose it cuts the latter faces in altitudes of respective lengths u and v. Then $2 c=u \sqrt{x^{2}+y^{2}}$, whence $u^{2}\left(x^{2}+y^{2}\right)=x^{2} y^{2}$. Hence

$$
v^{2}=z^{2}+u^{2}=\frac{x^{2} y^{2}+x^{2} z^{2}+y^{2} z^{2}}{x^{2}+y^{2}}=\frac{4\left(a^{2}+b^{2}+c^{2}\right)}{x^{2}+y^{2}}
$$

so that

$$
2 d=v \sqrt{x^{2}+y^{2}} \Longrightarrow 4 d^{2}=4\left(a^{2}+b^{2}+c^{2}\right)
$$

as desired.
Solution 4. [R. Ziman] Let a, b, c, d be vectors orthogonal to the respective faces of areas a, b, c, d that point inwards from these faces and have respective magnitudes a, b, c, d. If the vertices opposite the respective faces are $\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{O}$, then the first three are pairwise orthogonal and $2 \mathbf{c}=\mathbf{x} \times \mathbf{y}, 2 \mathbf{b}=\mathbf{z} \times \mathbf{x}, 2 \mathbf{c}$ $=\mathbf{x} \times \mathbf{y}$, and $2 \mathbf{d}=(\mathbf{z}-\mathbf{y}) \times(\mathbf{z}-\mathbf{x})=-(\mathbf{z} \times \mathbf{x})-(\mathbf{y} \times \mathbf{z})-(\mathbf{x} \times \mathbf{y})$. Hence $\mathbf{d}=-(\mathbf{a}+\mathbf{b}+\mathbf{c})$, so that

$$
d^{2}=\mathbf{d} \cdot \mathbf{d}=(\mathbf{a}+\mathbf{b}+\mathbf{c}) \cdot(\mathbf{a}+\mathbf{b}+\mathbf{c})=a^{2}+b^{2}+c^{2}
$$

140. Angus likes to go to the movies. On Monday, standing in line, he noted that the fraction x of the line was in front of him, while $1 / n$ of the line was behind him. On Tuesday, the same fraction x of the line
was in front of him, while $1 /(n+1)$ of the line was behind him. On Wednesday, the same fraction x of the line was in front of him, while $1 /(n+2)$ of the line was behind him. Determine a value of n for which this is possible.

Answer. When $x=5 / 6$, he could have $1 / 7$ of a line of 42 behind him, $1 / 8$ of a line of 24 behind him and $1 / 9$ of a line of 18 behind him. When $x=11 / 12$, he could have $1 / 14$ of a line of 84 behind him, $1 / 15$ of a line of 60 behind him and $1 / 16$ of a line of 48 behind him. When $x=13 / 15$, he could have $1 / 8$ of a line of 120 behind him, $1 / 9$ of a line of 45 behind him and $1 / 10$ of a line of 30 behind him.

Solution 1. The strategy in this solution is to try to narrow down the search by considering a special case. Suppose that $x=(u-1) / u$ for some positive integer exceeding 1 . Let $1 /(u+p)$ be the fraction of the line behind Angus. Then Angus himself represents this fraction of the line:

$$
1-\left(\frac{u-1}{u}+\frac{1}{u+p}\right)=\frac{p}{u(u+p)}
$$

so that there would be $u(u+p) / p$ people in line. To make this an integer, we can arrange that u is a multiple of p. For $n=u+1$, we want to get an integer for $p=1,2,3$, and so we may take u to be any multiple of 6 . Thus, we can arrange that x is any of $5 / 6,11 / 12,17 / 18,23 / 24$, and so on.

More generally, for $u(u+1), u(u+2) / 2$ and $u(u+3) / 3$ to all be integers we require that u be a multiple of 6 , and so can take $n=6 k+1$. On Monday, there would be $36 k^{2}+6 k$ people in line with $36 k^{2}-1$ in front and $6 k$ behind; on Tuesday, $18 k^{2}+6 k$ with $18 k^{2}+3 k-1$ in front and $3 k$ behind; on Wednesday, $12 k^{2}+6 k$ with $12 k^{2}+4 k-1$ and $2 k$ behind.

Solution 2. [O. Bormashenko] On the three successive days, the total numbers numbers of people in line are $u n, v(n+1)$ and $w(n+2)$ for some positive integers u, v and w. The fraction of the line constituted by Angus and those behind him is

$$
\frac{1}{u n}+\frac{1}{n}=\frac{1}{v(n+1)}+\frac{1}{n+1}=\frac{1}{w(n+2)}+\frac{1}{n+2} .
$$

These yield the equations

$$
(n-v)(n+1+u)=n(n+1)
$$

and

$$
(n+1-w)(n+2+v)=(n+1)(n+2)
$$

We need to find an integer v for which $n-v$ divides $n(n+1)$ and $n+2+v$ divides $(n+1)(n+2)$. This is equivalent to determining p, q for which $p+q=2(n+1), p<n, p$ divides $n(n+1), q>n+2$ and q divides $(n+1)(n+2)$. The triple $(n, p, q)=(7,4,12)$ works and yields $(u, v, w)=(6,3,2)$. In this case, $x=5 / 6$.

Comment 1. Solution 1 indicates how we can select x for which the amount of the line behind Angus is represented by any number of consecutive integer reciprocals. For example, in the case of $x=11 / 12$, he could also have $1 / 13$ of a line of 156 behind him. Another strategy might be to look at $x=(u-2) / u$, i.e. successively at $x=3 / 5,5 / 7,7 / 9, \cdots$. In this case, we assume that $1 /(u-p)$ is the line is behind him, and need to ensure that $u-2 p$ is a positive divisor of $u(u-p)$ for three consecutive values of p. If u is odd, we can achieve this with u any odd multiple of 15 , starting with $p=\frac{1}{2}(u-1)$.

Comment 2. With the same fraction in front on two days, suppose that $1 / n$ of a line of u people is behind the man on the first day, and $1 /(n+1)$ of a line of v people is behind him on the second day. Then

$$
\frac{1}{u}+\frac{1}{n}=\frac{1}{v}+\frac{1}{n+1}
$$

so that $u v=n(n+1)(u-v)$. This yields both $\left(n^{2}+n-v\right) u=\left(n^{2}+n\right) v$ and $\left(n^{2}+n+u\right) v=\left(n^{2}+n\right) u$, leading to

$$
u-v=\frac{u^{2}}{n^{2}+n+u}=\frac{v^{2}}{n^{2}+n-v} .
$$

Two immediate possibilities are $(n, u, v)=(n, n+1, n)$ and $(n, u, v)=\left(n, n(n+1), \frac{1}{2} n(n+1)\right)$. To get some more, taking $u-v=k$, we get the quadratic equation

$$
u^{2}-k u-k\left(n^{2}+n\right)=0
$$

with discriminant

$$
\Delta=k^{2}+4\left(n^{2}+n\right) k=\left[k+2\left(n^{2}+n\right)\right]^{2}-4\left(n^{2}+n\right)^{2},
$$

a pythagorean relationship when Δ is square and the equation has integer solutions. Select α, β, γ so that $\gamma \alpha \beta=n^{2}+n$ and let $k=\gamma\left(\alpha^{2}+\beta^{2}-2 \alpha \beta\right)=\gamma(\alpha-\beta)^{2}$; this will make the discriminant Δ equal to a square.

Taking $n=3$, for example, yields the possibilities $(u, v)=(132,11),(60,10),(36,9),(24,8),(12,6)$, $(6,4),(4,3)$. In general, we find that $(n, u, v)=(n, \gamma \alpha(\alpha-\beta), \gamma \beta(\alpha-\beta))$ when $n^{2}+n=\gamma \alpha \beta$ with $\alpha>\beta$. It turns out that $k=u-v=\gamma(\alpha-\beta)^{2}$.
141. In how many ways can the rational $2002 / 2001$ be written as the product of two rationals of the form $(n+1) / n$, where n is a positive integer?

Solution 1. We begin by proving a more general result. Let m be a positive integer, and denote by $d(m)$ and $d(m+1)$, the number of positive divisors of m and $m+1$ respectively. Suppose that

$$
\frac{m+1}{m}=\frac{p+1}{p} \cdot \frac{q+1}{q},
$$

where p and q are positive integers exceeding m. Then $(m+1) p q=m(p+1)(q+1)$, which reduces to $(p-m)(q-m)=m(m+1)$. It follows that $p=m+u$ and $q=m+v$, where $u v=m(m+1)$. Hence, every representation of $(m+1) / m$ corresponds to a factorization of $m(m+1)$.

On the other hand, observe that, if $u v=m(m+1)$, then

$$
\begin{aligned}
\frac{m+u+1}{m+u} & \cdot \frac{m+v+1}{m+v}=\frac{m^{2}+m(u+v+2)+u v+(u+v)+1}{m^{2}+m(u+v)+u v} \\
& =\frac{m^{2}+(m+1)(u+v)+m(m+1)+2 m+1}{m^{2}+m(u+v)+m(m+1)} \\
& =\frac{(m+1)^{2}+(m+1)(u+v)+m(m+1)}{m^{2}+m(u+v)+m(m+1)} \\
& =\frac{(m+1)[(m+1)+(u+v)+m]}{m[m+(u+v)+m+1]}=\frac{m+1}{m} .
\end{aligned}
$$

Hence, there is a one-one correspondence between representations and pairs (u, v) of complementary factors of $m(m+1)$. Since m and $m+1$ are coprime, the number of factors of $m(m+1)$ is equal to $d(m) d(m+1)$, and so the number of representations is equal to $\frac{1}{2} d(m) d(m+1)$.

Now consider the case that $m=2001$. Since $2001=3 \times 23 \times 29, d(2001)=8$; since $2002=2 \times 7 \times 11 \times 13$, $d(2002)=16$. Hence, the desired number of representations is 64 .

Solution 2. [R. Ziman] Let m be an arbitrary positive integer. Then, since $(m+1) / m$ is in lowest terms, $p q$ must be a multiple of m. Let $m+1=u v$ for some positive integers u and v and $m=r s$ for some positive integers r and s, where r is the greatest common divisor of m and p; suppose that $p=b r$ and $q=a s$, with s being the greatest common divisor of m and q. Then, the representation must have the form

$$
\frac{m+1}{m}=\frac{a u}{b r} \cdot \frac{b v}{a s},
$$

where $a u=b r+1$ and $b v=a s+1$. Hence

$$
b v=\frac{b r+1}{u} s+1=\frac{b r s+s+u}{u}
$$

so that $b=b(u v-r s)=s+u$ and

$$
a=\frac{s r+u r+1}{u}=\frac{m+1-u r}{u}=v+r .
$$

Thus, a and b are uniquely determined. Note that we can get a representation for any pair (u, v) of complementary factors or $m+1$ and (r, s) of complementary factors of m, and there are $d(m+1) d(m)$ of selecting these. However, the selections $\{(u, v),(r, s)\}$ and $\{(v, u),(s, r)\}$ yield the same representation, so that number of representations is $\frac{1}{2} d(m+1) d(m)$. The desired answer can now be found.
142. Let $x, y>0$ be such that $x^{3}+y^{3} \leq x-y$. Prove that $x^{2}+y^{2} \leq 1$.

Solution 1. [R. Barrington Leigh] We have that

$$
x-y \geq x^{3}+y^{3}>x^{3}-y^{3}
$$

Since $x-y \geq x^{3}+y^{3}>0$, we can divide this inequality by $x-y$ to obtain

$$
1>x^{2}+x y+y^{2}>x^{2}+y^{2}
$$

Solution 2. [S.E. Lu]

$$
\begin{aligned}
x-y & \geq x^{3}+y^{3}>x^{3}>x^{3}-\left[y^{3}+x y(x-y)\right] \\
& =x^{3}-x^{2} y+x y^{2}-y^{3}=\left(x^{2}+y^{2}\right)(x-y)
\end{aligned}
$$

whereupon a division by the positive quantity $x-y$ yields that $1>x^{2}+y^{2}$.
Solution 3. [O. Bormashenko] Observe that $y<x$ and that $x^{3}<x^{3}+y^{3} \leq x-y<x$, so that $0<y<x<1$. It follows that

$$
\begin{equation*}
x(x+y)<2 \Longrightarrow x y(x+y)<2 x y \tag{1}
\end{equation*}
$$

The given condition can be rewritten

$$
\begin{equation*}
(x+y)\left(x^{2}+y^{2}\right)-x y(x+y) \leq x-y \tag{2}
\end{equation*}
$$

Adding inequalities (1) and (2) yields

$$
(x+y)\left(x^{2}+y^{2}\right)<x+y
$$

whence $x^{2}+y^{2}<1$.
Solution 4. [R. Furmaniak] We have that

$$
\begin{aligned}
(x-y)\left(1-x^{2}-y^{2}\right) & =(x-y)-\left(x^{3}-x^{2} y+x y^{2}-y^{3}\right) \\
& \geq\left(x^{3}+y^{3}\right)-\left(x^{3}-x^{2} y+x y^{2}-y^{3}\right)=2 y^{3}+x^{2} y-x y^{2}=y\left(x^{2}-x y+2 y^{2}\right) \\
& =y\left[(x-\sqrt{2} y)^{2}+(2 \sqrt{2}-1) x y\right] \geq 0
\end{aligned}
$$

from which the result follows upon division by $x-y$.

Solution 5. Let $y=t x$. Since $x>y>0$, we have that $0<t<1$. Then $x^{3}\left(1+t^{3}\right) \leq x(1-t) \Rightarrow$ $x^{2}\left(1+t^{3}\right) \leq(1-t)$. Therefore,

$$
\begin{aligned}
x^{2}+y^{2} & =x^{2}\left(1+t^{2}\right) \leq\left(\frac{1-t}{1+t^{3}}\right)\left(1+t^{2}\right) \\
& =\frac{1-t+t^{2}-t^{3}}{1+t^{3}}=1-\frac{t\left(1-t+2 t^{2}\right)}{1+t^{3}}
\end{aligned}
$$

Since $1-t+2 t^{2}$, having negative discriminant, is always positive, the desired result follows.
Solution 6. [J. Chui] Suppose, if possible, that $x^{2}+y^{2}=r^{2}>1$. We can write $x=r \sin \theta$ and $y=r \cos \theta$ for $0 \leq \theta \leq \pi / 2$. Then

$$
\begin{aligned}
x^{3}+y^{3}-(x-y) & =r^{3} \sin ^{3} \theta+r^{3} \cos ^{3} \theta-r \sin \theta+r \cos \theta \\
& >r \sin \theta\left(\sin ^{2} \theta-1\right)+r \cos ^{3} \theta+r \cos \theta \\
& =-r \sin \theta \cos ^{2} \theta+r \cos ^{3} \theta+r \cos \theta \\
& =r \cos ^{2} \theta\left(\cos \theta+\frac{1}{\cos \theta}-\sin \theta\right) \\
& >r \cos ^{2} \theta(2-\sin \theta)>0
\end{aligned}
$$

contrary to hypothesis. The result follows by contradiction.
Solution 7. Let $r>0$ and $r^{2}=x^{2}+y^{2}$. Since $x>y>0$, we can write $x=r \cos \theta$ and $y=r \sin \theta$, where $0<\theta<\pi / 4$. The given equality is equivalent to

$$
r^{2} \leq \frac{\cos \theta-\sin \theta}{\cos ^{3} \theta+\sin ^{3} \theta}
$$

so it suffices to show that the right side does not exceed 1 to obtain the desired $r^{2} \leq 1$.
Observe that

$$
\begin{aligned}
1-\frac{\cos \theta-\sin \theta}{\cos ^{3} \theta+\sin ^{3} \theta} & =\frac{(\cos \theta+\sin \theta)(1-\cos \theta \sin \theta)-(\cos \theta-\sin \theta)}{\cos ^{3} \theta+\sin ^{3} \theta} \\
& =\frac{\sin \theta\left(2-\cos \theta \sin \theta-\cos ^{2} \theta\right)}{\cos ^{3} \theta+\sin ^{3} \theta}>0
\end{aligned}
$$

from which the desired result follows.
Solution 8. Begin as in Solution 7. Then

$$
\begin{aligned}
\frac{\cos \theta-\sin \theta}{\cos ^{3} \theta+\sin ^{3} \theta} & =\frac{\cos ^{2} \theta-\sin ^{2} \theta}{(\cos \theta+\sin \theta)^{2}(1-\cos \theta \sin \theta)} \\
& \left.=\frac{\cos 2 \theta}{(1+\sin 2 \theta)\left(1-\frac{1}{2} \sin \theta\right.}\right)=\frac{\cos 2 \theta}{1+\frac{1}{2} \sin 2 \theta(1-\sin 2 \theta)}<1
\end{aligned}
$$

from which the result follows.
143. A sequence whose entries are 0 and 1 has the property that, if each 0 is replaced by 01 and each 1 by 001 , then the sequence remains unchanged. Thus, it starts out as $010010101001 \cdots$. What is the 2002th term of the sequence?

Solution. Let us define finite sequences as follows. Suppose that $S_{1}=0$. Then, for each $k \geq 2, S_{k}$ is obtained by replacing each 0 in S_{k-1} by 01 and each 1 in S_{k-1} by 001 . Thus,

$$
S_{1}=0 ; \quad S_{2}=01 ; \quad S_{3}=01001 ; \quad S_{4}=010010101001 ; \quad S_{5}=01001010100101001010010101001 ; \cdots
$$

Each S_{k-1} is a prefix of S_{k}; in fact, it can be shown that, for each $k \geq 3$,

$$
S_{k}=S_{k-1} * S_{k-2} * S_{k-1}
$$

where $*$ indicates juxtaposition. The respective number of symbols in S_{k} for $k=1,2,3,4,5,6,7,8,9,10$ is equal to $1,2,5,12,29,70,169,408,985,2378$.

The 2002 th entry in the given infinite sequence is equal to the 2002 th entry in S_{10}, which is equal to the $(2002-985-408)$ th $=(609)$ th entry in S_{9}. This in turn is equal to the $(609-408-169)$ th $=(32)$ th entry in S_{8}, which is equal to the (32)th entry of S_{6}, or the third entry of S_{3}. Hence, the desired entry is 0 .

Comment. Suppose that $f(n)$ is the position of the nth one, so that $f(1)=2$ and $f(2)=5$. Let $g(n)$ be the number of zeros up to and including the nth position, and so $n-g(n)$ is the number of ones up to and including the nth position. Then we get the two equations

$$
\begin{gather*}
f(n)=2 g(n)+3(n-g(n))=3 n-g(n) \tag{1}\\
g(f(n))=f(n)-n \tag{2}
\end{gather*}
$$

These two can be used to determine the positions of the ones by stepping up; for example, we have $f(2)=5$, $g(5)=3, f(5)=15-3=12, g(12)=f(5)-5=7$, and so on. By messing around, one can arrive at the result, but it would be nice to formulate this approach in a nice clean efficient zeroing in on the answer.
144. Let a, b, c, d be rational numbers for which $b c \neq a d$. Prove that there are infinitely many rational values of x for which $\sqrt{(a+b x)(c+d x)}$ is rational. Explain the situation when $b c=a d$.

Solution 1. We study the possibility of making $c+d x=(a+b x) t^{2}$ for some rational numbers t. This would require that

$$
x=\frac{c-a t^{2}}{b t^{2}-d}
$$

Since the condition $b c \neq a d$ prohibits $b=d=0$, at least one of b and d must fail to vanish. Let us now construct our solution.

Let t be an arbitrary positive rational number for which $b t^{2} \neq d$. Then $a+b x=(b c-a d)\left(b t^{2}-d\right)^{-1}$ and $c+d x=(b c-a d) t^{2}\left(b t^{2}-d\right)^{-1}$, whence

$$
\sqrt{(a+b x)(c+d x)}=\left|(b c-a d) t\left(b t^{2}-d\right)^{-1}\right|
$$

is rational.
We need to show that distinct values of t deliver distinct values of x. Let u and v be two values of t for which

$$
\frac{c-a u^{2}}{b u^{2}-d}=\frac{c-a v^{2}}{b v^{2}-d}
$$

Then

$$
\begin{aligned}
0 & =\left(c-a u^{2}\right)\left(b v^{2}-d\right)-\left(c-a v^{2}\right)\left(b u^{2}-d\right) \\
& =b c\left(v^{2}-u^{2}\right)+a d\left(u^{2}-v^{2}\right)=(b c-a d)\left(u^{2}-v^{2}\right)
\end{aligned}
$$

so that $u=v$, and the result follows.
Consider the case that $b c=a d$. if both sides equal zero, then one of the possibilities $(a, b, c, d)=$ $(0,0, c, d),(a, b, 0,0),(a, 0, c, 0),(0, b, 0, d)$ must hold. In the first two cases, any x will serve. In the third, any value of x will serve provided that $a c$ is a rational square, and in the fourth, provided $b d$ is a rational square; otherwise, no x can be found. Otherwise, let $c / a=d / b=s$, for some nonzero rational s, so that $(a+b x)(c+d x)=s(a+b x)^{2}$. If s is a rational square, any value of x will do; if s is irrational, then only $x=-a / b=-c / d$ will work.

Solution 2. $(a+b x)(c+d x)=r^{2}$ for rational r is equivalent to

$$
b d x^{2}+(a d+b c) x+\left(a c-r^{2}\right)=0
$$

If $b=d=0$, this is satisfiable by all rational x provided $a c$ is a rational square and $r^{2}=a c$, and by no rational x otherwise. If exactly one of b and d is zero and $a d+b c \neq 0$, then each positive rational value is assumed by $\sqrt{(a+b x)(c+d x)}$ for a suitable value of x.

Otherwise, let $b d \neq 0$. Then, given r, we have the corresponding

$$
x=\frac{-(a d+b c) \pm \sqrt{(a d-b c)^{2}+4 b d r^{2}}}{2 b d} .
$$

If $a d=b c$, then this yields a rational x if and only if $b d$ is a rational square. Let $a d \neq b c$. We wish to make $(a d-b c)^{2}+4 b d r^{2}=s^{2}$ for some rational s. This is equivalent to

$$
4 b d r^{2}=(a d-b c)^{2}-s^{2}=(a d-b c+s)(a d-b c-s)
$$

Pick a pair u, v of rationals for which $u+v \neq 0$ and $u v=b d$. We want to make

$$
2 u r=a d-b c+s \quad \text { and } \quad 2 v r=a d-b c-s
$$

so that $(u+v) r=a d-b c$ and $s=(u-v) r$. Thus, let

$$
r=\frac{a d-b c}{u+v}
$$

Then

$$
\begin{aligned}
(a d-b c)^{2}+4 b d r^{2} & =(a d-b c)^{2}+4 u v r^{2} \\
& =\left(\frac{a d-b c}{u+v}\right)^{2}\left[(u+v)^{2}-4 u v\right] \\
& =\frac{(a d-b c)^{2}(u-v)^{2}}{(u+v)^{2}}
\end{aligned}
$$

is a rational square, and so x is rational. There are infinitely many possible ways of choosing u, v and each gives a different sum $u+v$ and so a different value of r and x. The desired result follows.

