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Notes. A rectangular hyperbola is an hyperbola whose asymmptotes are at right angles.

A triangle has its three vertices on a rectangular hyperbola. Prove that its orthocentre also lies on the
hyperbola.

Let a1, a9, -+, ant1,b1,b2,- -+, b, be nonnegative real numbers for which
() 012 a2 > -+ = g1 — 0,

({)0<by<lfork=1,2--,n.

Suppose that m = |by +ba + - -+ + b, | + 1. Prove that
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Let E and F' be respective points on sides AB and BC' of a triangle ABC' for which AE = CF. The
circle passing through the points B, C, E' and the circle passing through the points A, B, F' intersect at
B and D. Prove that BD is the bisector of angle ABC'.

If 10 equally spaced points around a circle are joined consecutively, a convex regular inscribed decagon
P is obtained; if every third point is joined, a self-intersecting regular decagon @ is formed. Prove that
the difference between the length of a side of ) and the length of a side of P is equal to the radius of
the circle. [With thanks to Ross Honsberger.]

Let a,b,u,v be nonnegative. Suppose that a® + b®> < 1 and u® 4+ v° < 1. Prove that
dcu+ b2 <1.
[With thanks to Ross Honsberger.]

Prove that there exists a tetrahedron ABCD, all of whose faces are similar right triangles, each face
having acute angles at A and B. Determine which of the edges of the tetrahedron is largest and which
is smallest, and find the ratio of their lengths.



