International Mathematical Talent Search - Round 14

Problem 1/14. Let a, b, c, d be positive numbers such that $a^{2}+b^{2}+(a-b)^{2}=$ $c^{2}+d^{2}+(c-d)^{2}$. Prove that $a^{4}+b^{4}+(a-b)^{4}=c^{4}+d^{4}+(c-d)^{4}$.
Problem 2/14. The price tags on three items in a store are as follows:

$$
\$ 0.75
$$

\$ 2.00
\$5.50
Notice that the sum of these three prices is $\$ 8.25$, and that the product of these three numbers is also 8.25 . Identify four prices whose sum is $\$ 8.25$ and whose product is also 8.25 .

Problem 3/14. In a group of eight mathematicians, each of them finds that there are exactly three others with whom he/she has a common area of interest. Is it possible to pair them off in such a manner that in each of the four pairs, the two mathematicians paired together have no common area of interest?

Problem 4/14. For positive integers a and b, define $a \sim b$ to mean that $a b+1$ is the square of an integer. Prove that if $a \sim b$, then there exists a positive integer c such that $a \sim c$ and $b \sim c$.
Problem 5/14. Let $\triangle A B C$ be given, extend its sides, and construct two hexagons as shown below. Compare the areas of the hexagons.

